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ABSTRACT

Real-Time Delay Prediction in Customer Service

Systems

Rouba Ibrahim

It is common practice in service systems to have customers who cannot be served

immediately upon arrival wait in queue until system resources become available to

the customer. A customer’s waiting experience typically affects his evaluation of the

service provided. For service providers, making delay announcements is a relatively

inexpensive way of reducing customer uncertainty about delays, thereby improving

customer satisfaction with the service provided. Our work focuses on applying queu-

ing theory and computer simulation to develop effective ways to accurately predict

customer delay in customer service systems, in real time. Primarily, these real-time

delay predictions are intended to help service providers make delay announcements.

But, they may also be used by service providers to better manage their systems. For

instance, recognizing that customer delay is longer than planned at a service facility,

the service provider may elect to provide additional service at that facility in order

to reduce customer delay. Our general approach is to consider large heavily-loaded

queueing models that mimic the operations of a real-life service system such as call

center or a hospital emergency department. We are particularly concerned with the



practical appeal of our delay prediction procedures. That is why we incorporate

important real-life phenomena such as customer abandonment, time-varying arrival

rates, and a time-varying number of servers. We also consider general arrival, ser-

vice, and abandonment-time distributions (exponential and non-exponential), which

are commonly observed in practice. We use heavy traffic limits and computer simu-

lation to quantify the accuracy of the alternative delay predictors proposed, and to

compare them with delay predictors commonly used in practice.

Keywords: Real-time delay prediction; delay announcements, many-server queues;

simulation; heavy-traffic; call centers; customer abandonment; time-varying arrival

rates; nonstationary queues; time-varying number of servers;
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1
Introduction

The service sector currently dominates the economic landscape of both emerging and

developed economies. For example, the “US economy in brief” report (2008) shows

that, as of 2008, the service sector in the United States contributes to nearly 70%
of the Gross Domestic Product (GDP) and employs roughly 80% of the American

workforce. In broad terms, the service sector comprises businesses (systems) that

produce a service instead of just an end product; e.g., hospitals are service systems

that provide health care services to patients.

Unlike tangible products, services are experienced and not consumed. To increase

customer satisfaction, service systems compete in improving the quality of service

provided. In general, quality of service is difficult to measure because it involves

the perception of the customer being served and his mental state (as well as the

provider’s) during the service delivery. Nevertheless, some performance measures

are commonly used to quantify the service level. One such measure is the delay

experienced by customers in the system. Indeed, the time spent waiting for service

is one of the most critical attributes of quality of service; e.g., see Maister (1985),

1
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Larson (1987), Taylor (1994), and references therein.

Service providers are often faced with both time-varying and uncertain demand;

e.g., see Mandelbaum et al. (2000), Jongbloed and Koole (2001), Avramidis et

al. (2004), and Brown et al. (2005). That is especially challenging because service

capacity (e.g., number of agents) cannot be inventoried. In an ideal service scenario,

service providers have the ability to respond quickly to changing demand by adjusting

staffing levels to meet unexpected demand in the short run; see Green et al. (2007),

Feldman et al. (2008), and references therein. With appropriate staffing, customer

wait times are short and quality of service can be high. We focus here on the

less ideal case where service providers lack the resources or the flexibility to meet

unexpected surges in demand, leading to long customer wait times. For example,

the latter case is common in service-oriented (as opposed to revenue-generating)

call centers; e.g., see Aksin et al. (2007).

There is empirical evidence suggesting that long waits lead to poor service evalu-

ation, especially when coupled with feelings of uncertainty about the length of the

wait; e.g., see Maister (1985) and Taylor (1994). Hiring and training new agents

to alleviate the wait may be too costly. For example, Gans et al. (2003) indicate

that “in most call centers capacity costs in general, and human resource costs in

particular, account for 60% - 70% of operating expenses” (p.80). Studies show

that improving customers’ perceptions of the waiting experience can be as effective

as reducing the actual length of the wait; see Katz et al. (1991). In particular,

making delay announcements is a relatively inexpensive way of reducing customer

uncertainty about delays, thereby improving customer satisfaction with the service

provided; e.g., see Taylor (1994), Hui and Tse (1996), Munichor and Rafaeli (2007),

and references therein. One important issue for service providers is the accuracy of

those delay announcements.
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1.1 Overview

In this work, we use queueing theory and computer simulation to develop accurate

ways to predict customer delay in service systems, in real time. Primarily, these

real-time delay predictions are intended to help service providers make delay an-

nouncements. But, they may also be used by service providers to better manage

their systems. For instance, recognizing that customer delay is longer than planned

at a service facility, the service provider may elect to provide additional service at

that facility in order to reduce customer delay.

To fully understand a complex service system, we need to study it in detail. However,

to help develop a service science, we systematically study various delay predictors in

controlled environments, i.e., in structured models. Our general approach is to use

queueing models that mimic the operations of real-life service systems. Indeed, we

are particularly concerned with the practical appeal of our delay prediction proce-

dures. That is why we incorporate important real-life phenomena such as customer

abandonment, time-varying arrival rates, and a time-varying number of servers. We

also consider non-exponential arrival, service, and abandonment-time distributions,

which are commonly observed in practice; e.g., see Brown et al. (2005).

1.2 Motivating Application: Delay Announcements

We envision our delay predictions being used to make delay announcements to arriv-

ing customers. Since it helps to have a definite context in mind, we primarily focus

here on two types of service systems: (i) hospital emergency departments (ED) and

(ii) telephone call centers.

Delay announcements can be especially helpful with emergency services, such as in
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a hospital ED. A recent study by Press Ganey (2009), an Indiana-based consulting

company specializing in healthcare services, found that the average patient waiting

time in hospital ED’s in the United States is about four hours. Making real-time

delay announcements is important with such long waits. Lengthy waits in hospital

ED’s are common, due to different factors including: (i) a lack of capacity, which

translates into patients having to wait until hospital beds become available, and (ii)

unpredictable surges in demand, such as those that emerge from disasters or local

epidemics. Due to those lengthy waits, some patients may opt to “leave without

being seen” (LWBS) by a doctor. Updating patients on their status (e.g., via delay

announcements), would make their long waits in the ED more bearable, and could

deter them from abandoning the ED before treatment.

Delay announcements can also be helpful with other less critical services. For ex-

ample, they can be especially helpful when queues are invisible to customers, such

as in call centers; see Gans et al. (2003) and Aksin et al. (2007) for background

on call centers. Call center operations are typically regulated by service-level agree-

ments (SLA) which specify target performance levels (such as wait-time level and

proportion of abandoning customers). Nevertheless, in service-oriented call centers,

such as those providing technical support services to incoming callers, customer

wait times can sometimes be long, even when SLA performance levels are met on

average. Indeed, a recent study by Vocalabs (2010), a Minnesota-based consulting

company specializing in customer-service surveys, found that customer dissatisfac-

tion with lengthy waits in customer call centers remains a major concern for leading

companies such as Apple, Dell, and HP. Making real-time delay announcements is

one way of increasing customer satisfaction.
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1.3 Complications

1.3.1 Delay Announcement Framework

We envision the following design: Each delayed customer, upon arrival, is given a

single-number delay prediction of that customer’s delay until he can start service.

A natural alternative design is to make several (updated) delay announcements,

throughout the wait time of a delayed customer, thus creating a sense of progress.

Munichor and Rafaeli (2007) show that delay announcements that “create a stronger

sense of progress will produce more positive (customer) reactions” (p.512). How-

ever, making updated delay announcements is complicated because it involves keep-

ing track of the state of the system at each delay announcement epoch. Addition-

ally, there is a question of when to make the announcements. For example, Allon

et al. (2010b) show that, under some conditions, it may be profitable for firms to

postpone the delay announcement, i.e., to abstain from communicating information

about anticipated delays immediately upon customer arrival.

Finally, there also remains to investigate other types of delay announcements, be-

sides single-number predictions. For example, a service provider may choose to

communicate a prediction interval or some upper bound of the wait time to delayed

customers. Indeed, Guo and Zipkin (2007) show that accurate delay information

may sometimes hurt both the provider and the customers. It may be even be more

profitable for service providers to be intentionally vague about anticipated delays;

e.g., see Allon et al. (2010a).

To gain insight into more complicated scenarios, it is natural to begin an investi-

gation in a relatively tractable setting, for which we are able to obtain analytical

results. Therefore, we leave the important extensions highlighted above to future
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research.

1.3.2 Alternative Delay Predictors

Alternative delay predictors differ in the type and amount of information that their

implementation requires. For example, this information may involve the model,

the system state upon arrival, or the history of delays in the system. Analyzing the

performance of the candidate predictors is especially difficult because it involves con-

ditioning on this information. (The analysis becomes even more difficult if customer

reaction to delay announcements is taken into account; see §1.3.3.) Computer

simulation is thus essential to gain insight into the performance of alternative delay

predictors.

Mathematical analysis and extensive simulation experiments show that there is not

a single best delay predictor for all circumstances. Therefore, it is necessary to study

the performance of multiple candidate predictors. Naturally, a good delay predictor

is a delay predictor that is accurate. We use several performance measures to

quantify the accuracy of a delay predictor. For example, we use the mean squared

error (MSE) which we estimate via simulation by the average squared error (ASE).

The MSE is defined as the expected value of the square of the difference between

delay prediction and actual delay. Since the predictor typically depends on state

information, we use the expected MSE, considering the steady-state distribution

of the state information. The analysis becomes even more complicated with time-

varying arrivals where the MSE is also a function of time; e.g., see §4.3. The mean

delay, conditional on some state information, minimizes the expected MSE. Thus,

the most accurate predictor, under the MSE criterion, is the unbiased predictor

announcing the conditional mean. Unfortunately, it is usually difficult to determine
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the conditional mean exactly. Therefore, we rely on approximations.

It is also important that the delay predictor be easy to implement in a real-life system,

i.e., that it uses information that is readily available. An important insight, which

applies broadly, is that simplicity and ease of implementation are often obtained at

the expense of statistical accuracy.

In broad terms, we consider two families of delay predictors: (i) delay-history-based

predictors, and (ii) queue-length-based predictors. Delay-history-based predictors

exploit information about recent customer delay history in the system. Queue-

length-based predictors exploit knowledge of the queue length (number of waiting

customers) seen upon arrival.

Delay-history-based predictors are appealing because they rely solely on information

about recent customer delay history and thus need not assume knowledge of system

parameters. For example, as in Armony et al. (2009), a standard delay-history-based

predictor is the waiting time of the last customer to have entered service (LES) at

the new arrival epoch. That is, �LES(t; wL) � wL, where wL is the delay of the LES

customer at the time of a new arrival, t. Queue-length-based predictors exploit

system-state information including the queue length seen upon arrival. Additionally,

they exploit information about various system parameters such as the arrival rate,

the abandonment rate, and the number of servers. In general, queue-length-based

predictors are more accurate than delay-history-based predictors because they exploit

additional information about the state of the system at the time of prediction. For

previous work on delay predictors exploiting system state information, see Whitt

(1999a).
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1.3.3 Customer Reactions

Customers typically respond to delay announcements, and their response alters sys-

tem performance. For example, some customers may elect to balk, upon arrival, in

response to a delay announcement. As a result, the arrival rate to the system would

become state dependent. Moreover, customers who decide to stay may have dif-

ferent abandonment behavior in response to the announcement. They may become

increasingly impatient if they have to wait more than their announced delay. As a

result, the abandonment distribution of customers in queue would depend on their

elapsed waiting time. Changes in system performance alter, in turn, the delay pre-

dictions given. As discussed by Armony et al. (2009), studying customer responses

to delay announcements requires an equilibrium analysis. However, it is not clear

whether an equilibrium exists, or how to fully characterize it. There may even be

multiple equilibria.

Here, we do not directly consider customer response. We think of our delay predic-

tions being based on model information obtained after equilibrium has been reached

(with the announcements being used). More generally, we regard our work as an

essential first step toward studying the performance impact of delay announcements

in the queueing models considered. It is not hard to see how the delay prediction

methods of this work can be applied to the more complicated setting involving

customer response. Indeed, delay-history-based predictors directly account for cus-

tomer response because they depend on the history of delays in the system, which in

turn is affected by customer response. Delay-history-based predictors are appealing

precisely because they directly apply to models involving customer response.

The queue-length-based predictors can also be extended to account for changes

in customer behavior. For example, we could use an iterative simulation-based
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algorithm to develop approximations of the equilibrium performance of the queueing

model with delay announcements. During each iteration, we would give real-time

delay predictions to arriving customers, and model their response. We would then

re-estimate model parameters that are affected by customer response, and feed

these new estimates into the subsequent iteration. The algorithm would continue

until the observed difference between successive estimates of model parameters is

negligible. It is significant that our proposed queue-length-based predictors apply

directly to the successive iterations of this algorithm, using the different set of model

parameters from each iteration. However, there remains to determine appropriate

regularity conditions under which this algorithm terminates, i.e., under which there

exists a unique equilibrium in the system. We leave such important extensions to

future research.

1.4 Queueing Models

In this work, we study ways of predicting customer delay in several queueing models.

Here, we briefly describe those models. A more detailed description is relegated to

subsequent chapters.

In chapter 2, we consider the simple idealized setting of the GI=M=s queueing model.

This model has independent and identically distributed (i.i.d) exponential service

times and s homogeneous servers. The interarrival times are i.i.d with a general

distribution. Customers are served in order of arrival, i.e., we consider the first-

come-first-served (FCFS) service discipline. The GI=M=s model has the advantage

of mathematical tractability. In the GI=M=s model, we are able to obtain analytical

results for several delay predictors.
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As in Garnett et al. (2002), customer abandonment is an important phenomenon

in real-life service systems. For example, the Help Desk Institute (2009) indicates,

in its annual report, that about 40% of call centers observe an abandonment rate

of over 10%. Moreover, non-exponential abandonment-time distributions are often

observed in practice; e.g., see Brown et al. (2005). In chapter 3, we consider the

GI=GI=s + GI model which includes independent sequences of i.i.d. service and

abandonment times with general distributions. The GI=GI=s +GI model is difficult

to analyze directly, so we rely on approximations in Whitt (2005b, 2006) to develop

new delay predictors which effectively cope with customer abandonment.

The GI=M=s and GI=GI=s + GI models both assume a stationary arrival process.

However, arrival processes to service systems, in real life, typically vary significantly

over time; e.g., see Avramidis et al. (2004), Brown et al. (2005), and Shen

and Huang (2008a, b). Therefore, in chapter 4, we consider the M(t)=GI=s and

M(t)=GI=s +GI queueing models with a nonhomogeneous Poisson arrival process.

Finally, since service providers typically adjust their staffing level in response to

time-varying demand we consider, in chapter 5, the M(t)=GI=s(t)+GI model with

time-varying arrivals and a time-varying number of servers. To develop new delay

predictors that effectively cope with time-varying demand and capacity, we rely on

deterministic fluid approximations in Liu and Whitt (2010).

Real-life service systems are often much more complicated than structured queue-

ing models. For one example, there may be multiple customer classes and multiple

service pools with some form of skill-based routing; see Gans et al. (2003). For

a second example, as with Web chat, servers may serve several customers simul-

taneously, different servers may participate in a single service, and there may be

interruptions in the service times. For a third example, the arrival rate in a real-life

system is often not known with certainty (as is assumed with a nonhomogeneous
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Poisson arrival process). Therefore, it could be assumed to be a random variable;

e.g., see Jongbloed and Koole (2001). However, such generalizations greatly com-

plicate the analysis and are left to future research. The results of this work provide

useful background for similar studies in even more complicated settings.

1.5 Literature Review

In broad terms, there are two main areas of research intimately related to our work:

The first area studies the effect of delay announcements on system dynamics, and

the second area studies alternative ways of predicting customer delay in service

systems.

1.5.1 Effect of Delay Announcements

We begin by reviewing related literature from the first area. In general, this body of

literature considers the issue of “optimal” wait-time quotes (by assuming appropriate

cost structures) and studies the benefits of both overestimating and underestimat-

ing anticipated delays. That is different from our work where we focus solely on

accurately predicting anticipated delays. Additionally, this stream of papers explic-

itly models customer reactions to the delay announcements made. In contrast, we

do not incorporate customer reactions into our models, and leave this question to

future research.

One of the earliest papers about customers influenced by delay information is Naor

(1969). In that paper, identical risk-neutral customers decide, based on the observed

queue length, whether or not to balk by comparing the expected cost of waiting

with the reward from being served. In that context, Naor showed that imposing
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appropriate tolls (upon entry) to arriving customers may regulate the system and

lead to social optimality. Hassin (1986) adopted the same model as Naor (1969),

and determined conditions under which a revenue-maximizing server should reveal

(induce balking) or suppress (prevent balking) information about the queue length

in the system to arriving customers.

Some researchers studied the problem of quoting manufacturing lead times in sys-

tems. For example, Duenyas and Hopp (1995) investigated the problem of quot-

ing optimal lead times from the point of view of a revenue-maximizing manufac-

turer. First, they considered an infinite-capacity system and calculated the profit-

maximizing lead time quote. (On one hand, a high lead time quote induces many

customers to balk, and on the other hand, the manufacturer incurs a penalty if

the order is not filled on time.) Then, they considered the case where capacity is

finite and derived profit-maximizing lead time quotes under two scenarios: (i) where

the lead time is dictated by the market, and (ii) where firms are able to compete

on the basis of lead time. They found that the optimal lead time quote policy is

state-dependent and increasing in the state.

Spearman and Zhang (1999) considered two different problems. The first problem

seeks to minimize the average lead time quote of jobs subject to a constraint on

the fraction of tardy jobs. The second problem uses the same objective subject to a

constraint on average tardiness. The optimal lead time quote for the first problem

is inconsistent with “ethical practice”. In particular, the authors showed that it may

sometimes be optimal for a firm to quote lead times that it has no hope of achieving.

They attributed this conclusion to the inadequacy of using the fraction of tardy jobs

as a service measure. On the other hand, the lead time quote policy which solves the

second problem is more reasonable: Lead-time quotes are monotonically increasing

with the level of congestion in the system.
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Dobson and Pinker (2005) compared two scenarios where the firm shares either

state-dependent or steady-state lead time information. Dobson and Pinker assumed

that the firm cannot choose a lead time quote arbitrarily and must provide accurate

quotes that are achieved (in a probabilistic sense) at least a given fraction of the

time. Their focus on accuracy is similar to ours in this thesis. Dobson and Pinker

showed that, in many cases, providing state-dependent lead time information is

better than information based on the long-run lead time distribution, for both the

firm and the customers. (State-dependent information increased throughput for the

firm and decreased expected waiting time for the customers.) One main conclusion

reached is that the possible benefits of sharing more information with customers are

highly sensitive to modeling assumption (in their case, to the nature of a customer’s

sensitivity to waiting).

Guo and Zipkin (2007) considered a single server Markovian queue with balking

and compared the effects of three different levels of delay information on system

dynamics: (i) no information (steady-state distribution of wait-time), (ii) partial

information (number of customers in the system), and (iii) full information (exact

delay information). For (iii), Guo and Zipkin assumed that customers bring the

realization of their service times upon arrival. They derived sufficient conditions

under which more information helps the service provider (by increasing throughput)

or the customers (by increasing the average utility). They found that, in some cases,

more information can actually hurt one or the other.

Allon et al. (2010a) studied a retail operations problem where customers are strate-

gic in both their actions and the way that they interpreted information communicated

to them by the firm. In a dynamic game framework, they discussed the equilibrium

language emerging between the retailer and its customers. When there is a single

retailer, they find that equilibrium language only emerges when no information is
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revealed. When there is more than one retailer, they found that firms are capable

of credibly sharing unverifiable information. Interestingly, they found that firms are

better off under an equilibrium in which intentional vagueness is used. Allon et al.

(2010b) studied a related problem. They addressed the issue of delaying the an-

nouncements and showed that doing so may actually create credibility for the firm

and augment the equilibrium language. They also showed that credibility, whenever

created, improves not only the profit for the firm but also customer utility overall.

Other research has focused on studying delay announcements in call centers, as

we do in this thesis. Whitt (1999b) studied the effect of communicating informa-

tion about anticipated delays on system dynamics. In particular, he compared two

Markovian models. In Model 1, no delay announcements are made, and customers

may either balk upon arrival or join the queue and abandon if their wait exceeds

their patience. In Model 2, information about current system state is communi-

cated to arriving customers who, as a result, either balk upon arrival or remain in

queue (customer abandonment is entirely replaced by balking). Whitt showed that

the number of customers in Model 1 is stochastically larger than in Model 2. In-

tuitively, more customers balk immediately upon arrival in Model 2, thus alleviating

the congestion in the system. Whitt’s paper provides theoretical support to using

delay announcements as a control mechanism by the service provider.

Armony and Maglaras (2004) considered a Markovian model with two different

modes of service: real-time and postponed with a delay guarantee. They, too, fo-

cused specifically on call centers. In their model, customers are informed about their

anticipated wait upon arrival and are offered a call-back option whereby the system

will call them back within a specified amount of time. The authors proposed a delay

prediction scheme and showed that it is asymptotically correct in the Quality and

Efficiency Driven (Halfin-Whitt) regime. They also proposed a routing policy that
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asymptotically minimizes real-time delay subject to the deadline of the postponed

service mode. Consistent with our approach in this thesis, Armony and Maglaras

focused on quoting wait times as accurately as possible.

Our work is partly motivated by Armony et al. (2009). The authors of that paper

studied delay announcements in many-server queues with customer abandonment,

focusing on customer response to the announcements, leading to balking and new

abandonment behavior. They developed ways to approximately describe the equilib-

rium system performance using LES delay announcements (considered in this work

as well). More specifically, they use deterministic fluid approximations in Whitt

(2006) to derive conditions under which a unique equilibrium exists for the system

with announcements. Armony et al. (2009) discussed the motivation for the LES

delay predictor and other delays predictors based on recent delay history. Here, we

consider a wider range of delay-history-based predictors.

Jouini et al. (2010) extended the model in Whitt (1999b). In particular, they as-

sumed that customers who are given a delay announcement either balk immediately

upon arrival or abandon, after joining the queue, if they end up waiting more than

the delay announcement. Jouini et al. characterized, analytically, the performance

measures for this model and used a numerical study to explore when informing cus-

tomers about delays is beneficial, and what the optimal precision announcement

is.

1.5.2 Predicting Customer Delay

The second body of literature focuses on accurately predicting customer waiting

times in service systems, in real time, where the predictions could be used to make

delay announcements. We note in passing that there is a stream of papers concen-
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trated on correctly predicting lead times in the manufacturing setting, e.g., Morton

and Vepsalainen (1987), Ornek and Collier (1988), and Shanthikumar and Sumita

(1988), but their context is different from ours.

In addition to Armony et al. (2009), our work is also partly motivated by Whitt

(1999a). In that paper, Whitt investigated delay predictions based on the state of

the system in multiserver queues without customer abandonment. He showed how

additional information about system state (e.g., number of customers in the system

and elapsed service times) leads to better predictions. We reach similar conclusions

in this work as well. We also use one predictor, QL, which was proposed in Whitt

(1999a); see chapter 2. However, we consider here more complicated queueing

models incorporating additional features such as time-varying arrival rates.

Nakibly (2002) focuses mostly on queueing models with priority and studies ways

to predict waiting times based on information about system state upon arrival. She

uses difference equations to predict waiting times in a model with two servers and

two service types. She then uses matrix geometric methods to predict waiting times

in more general systems with priorities (but without customer abandonment).

This thesis mainly contributes to the second area of research. It comprises edited

versions of four papers, Ibrahim and Whitt (2009a,b, 2010a,b), where we study

the accuracy of alternative delay predictors in queueing models with several realistic

features.

1.6 Main Contributions

Here are our general contributions. We describe our specific contributions, in more

detail, at the beginning of each subsequent chapter.
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First and foremost, we develop several new real-time delay predictors applying to

a broad range of models. The delay predictors that we propose are appealing be-

cause (i) they are easy to implement in practice, and (ii) they effectively cope with

multiple real-life features such as non-exponential service and abandonment-time

distributions, and time-varying demand and capacity. The main novelty of this work

lies in systematically considering all those features which are relevant in practice.

Direct mathematical analysis is often complicated in our models. That is why we

resort to approximations which we also show are effective.

Second, we establish heavy-traffic limits that generate approximations for the ex-

pected MSE of some delay predictors in the GI=M=s and GI=GI=s+GI models. We

verify the effectiveness of our approximations through computer simulation. Indeed,

our approach to the delay prediction problem, throughout this thesis, combines both

theoretical analysis and numerical support.

Third, we describe results of a wide range of simulation experiments, in a variety of

settings, evaluating all alternative delay predictors proposed. As in some previous

research (see §1.5), we also compare the accuracy of predictors exploiting system-

state information to others relying only on model parameters. Our simulation study

is exhaustive and provides ample support to our general conclusions.

Finally, we focus especially on delay predictors which are commonly used in prac-

tice, such as the QL predictor of chapter 2 and the (no-information) NI predictor

(announcing the expected waiting time) of chapters 2 and 3, and alternative delay-

history-based predictors. We study the performance of those predictors, show how

and when they may not be effective, and propose new and more accurate predictors.
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1.7 Organization

The rest of this thesis is organized as follows. In chapter 2, we consider the GI=M=s
model and study the performance of alternative delay-history-based predictors in

that context. We compare the performance of those predictors to the standard QL

predictor, commonly used in practice. In chapter 3, we consider the GI=GI=s + GI
model. We exploit established approximations for performance measures with a

non-exponential abandonment-time distribution to obtain new delay predictors that

effectively cope with non-exponential abandonment-time distributions. In chapter

4, we focus especially on delay predictors exploiting recent customer delay history.

We show that time-varying arrival rates can introduce significant prediction bias in

delay-history-based predictors when the system experiences alternating periods of

overload and underload. We then introduce refined delay-history-based predictors

that effectively cope with time-varying arrival rates together with non-exponential

service-time and abandonment-time distributions. In chapter 5, we develop new

improved real-time delay predictors for many-server service systems with a time-

varying arrival rate, a time-varying number of servers, and customer abandonment.

We develop four new predictors, two of which exploit an established deterministic

fluid approximation for a many-server queueing model with those features. In chapter

6, we draw conclusions. We present additional simulation results in the appendix.

Even more simulation results are presented in online supplements to Ibrahim and

Whitt (2009a,b, 2010a,b), available on the authors’ webpages.



2
Delay Prediction in the GI=M=s Model

2.1 Introduction

In this chapter, we study the performance of alternative real-time delay predictors

based on recent customer delay experience in the standard GI=M=s queueing model,

emphasizing the case of large s. The main predictors considered are: (i) the delay

of the last customer to enter service (LES), (ii) the delay experienced so far by

the customer at the head of the line (HOL), and (iii) the delay experienced by the

customer to have arrived most recently among those who have already completed

service (RCS). We compare these delay-history-based predictors to the standard

predictor based on the queue length (QL), commonly used in practice, which requires

knowledge of the mean interval between successive service completions in addition to

the queue length. We characterize performance by the mean squared error (MSE).

Our main contributions are to: (i) obtain analytical results for the conditional distri-

bution of the delay given the observed HOL delay and propose its mean value as a

refined predictor, (ii) establish heavy-traffic limits quantifying the difference in per-

19
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formance between QL and HOL (LES) in the many-server and classical heavy-traffic

limiting regimes, (iii) show that delay-history-based predictors are all asymptotically

relatively efficient (ratio of MSE to the square of the mean converges to 0) in the

many-server and classical heavy-traffic limiting regimes, and (iv) describe results of

a wide range of simulation experiments evaluating the alternative delay predictors.

This chapter is an edited version of Ibrahim and Whitt (2009a).

2.1.1 The GI=M=s Model

We now specify the GI=M=s model: The service times are independent and identi-

cally distributed (i.i.d.) exponential random variables Sn with mean 1. The inter-

arrival times are i.i.d. positive random variables Un with a non-lattice cumulative

distribution function (cdf) F . (We will also consider the deterministic arrival process,

which violates this condition; consequently, it will require slightly different analysis.)

We omit the subscripts from U and S when the specific index is not important. Let

F have finite third moment, characterized by �a3 � E[U3]=(E[U])3. Then F nec-

essarily has finite first and second moments. Assume that E[U] = 1=(s�), where

s is the number of servers and � � E[S]=(sE[U]) is the traffic intensity. Let F
have SCV c2a � V ar(U)=(E[U]2). Let A � fA(t) : t � 0g be the renewal counting

process (arrival process) associated with Un, defined by

A(t) � max fn � 0 : U1 + � � �+ Un � tg; t � 0 : (2.1)

The GI=M=s system is well known to be stable, and have a proper limiting steady-

state behavior, if and only if � < 1. All our simulation results are for the GI=M=s
model in steady state, even though the prediction procedures apply more generally.
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2.1.2 The Standard Queue-Length (QL) Delay Predictor

The standard state-dependent delay predictor, commonly used in practice (assuming

service from a queue in first-come first-served order, but without any other specific

model assumptions), is the queue-length (QL) delay predictor, defined as

�QL(t) � Q(t) + 1
r(t) ; (2.2)

where the notation �means “defined as,” t is the current time (time of the arrival for

which the announcement is made), Q(t) is the queue length (number of customers

waiting) and r(t) is the rate at which customers enter service (typically not known

precisely). If the number of servers is s(t), and can be assumed to remain at

that level in the near future, with each server serving a single customer without

interruption, and the current average service time is m(t), then the rate customers

enter service may be approximated by r(t) = s(t)=m(t). Furthermore, when the

mean service time is stable, we can replace m(t) by a long-run average service

time m. The QL delay predictor then becomes �QL(t) � m(Q(t) + 1)=s(t), which

requires knowledge of only s(t), the number of servers, and Q(t), the queue length,

at each time t, which is information that usually is readily available.

2.1.3 Predictors Based on Delay History

In addition to QL, we also examine alternative predictors based on the delays actually

experienced by recent customers, in particular: (i) the delay of the last customer to

enter service (LES), (ii) the delay experienced so far by the customer at the head

of the line (HOL), (iii) the delay experienced by the customer to have arrived most

recently among those that have completed service (RCS).
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These delay predictors based on recent delay history are appealing because they

are easy to interpret, and because they are simple and robust, applying to a broad

range of models, without requiring knowledge of the model or its parameters. If

somehow the queue length, Q(t), or the rate at which customers enter service,

r(t) is unknown or incorrect, then we would have difficulties with the standard QL

predictor. With any prediction system, it is good to monitor its performance, but

that is often not possible for the customer. A delay-history delay predictor has the

advantage that the basis for the prediction is evident.

The HOL delay predictor was used as an announcement in an Israeli bank studied

by Mandelbaum et al. (2000) and is mentioned as a candidate delay announcement

by Nakibly (2002) in her study of delay predictions. In this study, we are motivated

in part by recent work by Armony et al. (2009), who studied delay announcements

in many-server queues with customer abandonment, focusing on customer response

to the announcements, leading to balking and new abandonment behavior. They

developed ways to approximately describe the equilibrium system performance using

LES delay announcements. Armony et al. (2009) discuss the motivation for the

LES delay predictor and other delays predictors based on recent delay history.

2.1.4 Quantifying the Effectiveness

We quantify the effectiveness of the delay predictors through the mean squared error

(MSE), which we approximate analytically and estimate via simulation. To illustrate,

let WLES(w) denote the random delay of a new arrival, conditional on that customer

having to wait and an observed LES delay of w (under specified conditions, e.g.,

in steady state). Let �LES(w) be a candidate predictor based on this information.

We will primarily be concerned with the direct predictor �dLES(w) � w , the refined
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predictor �rLES(w) � E[WLES(w)] and approximations of the refined predictor, since

the refined predictor is difficult to determine. The MSE of such an predictor is

MSE � MSE(�LES(w)) � E [(WLES(w)� �LES(w))2] : (2.3)

For the refined predictor �rLES(w), the MSE coincides with the variance V ar(WLES(w)).
It is well known that the mean minimizes the MSE (using that information).

To estimate these MSE’s via simulation, we use the average squared error (ASE),

defined by

ASE � 1
n

n∑
j=1 (aj � pj)

2 ; (2.4)

where aj is the actual delay and pj is the predicted delay for appropriate customers.

For example, if we want to estimate the performance of LES when the observed

delay is w = 0:40, then we consider all arrivals who must wait (aj > 0) for which

the LES delay pj falls in an interval such as [0:39; 0:41]. On the other hand, if we

wish to consider the overall average performance of LES, then we consider all j such

that aj > 0.

2.1.5 Study in an Idealized Setting

In this chapter, we study the performance of the delay-history-based predictors and

compare them to the standard QL delay predictor in the relatively simple idealized

setting of the GI=M=s queueing model. Let m denote the mean service time. For

this GI=M=s model, the QL predictor �QL(t) � m(Q(t) + 1)=s is an ideal delay

predictor. Indeed, there are no serious competitors, as far as statistical precision is

concerned (provided that we have no information about remaining service times).

Given the queue length, the future evolution of the system is independent of the
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past. (This even remain true for more general arrival processes.) Consequently,

�QL(t) is the conditional mean delay given all information available at time t, so

that it minimizes the MSE.

We study the alternative delay-history-based predictors in this simple context in

order to gain insight about the relative performance of alternative predictors in more

complex scenarios (which are much more difficult to analyze directly). We know that

the QL predictor will have superior performance for the GI=M=s model, but we want

to understand by how much. That knowledge will help us understand the advantage

of the QL predictor over these alternative delay predictors when the QL predictor is

appropriate, and will provide useful background when considering these alternative

delay predictors for more complicated systems for which these alternative predictors

may be preferred.

2.1.6 Motivation for Considering Alternative Delay Predictors

Whenever the actual service system is well modeled by a GI=M=s queueing model

and the system state is known accurately at each time, then there is little motivation

for considering other delay predictors besides the standard QL predictor. However,

real service systems rarely are as simple as the GI=M=s model. First, the service-

time distribution might well be non-exponential, as shown for call centers by Brown

et al. (2005). Second, the number of servers and mean service times often change

over time, in part because the servers are humans who serve in different shifts and

may well have different service-time distributions. Third, the queue length may not

be directly observable. That is nicely illustrated by the ticket queues studied by Xu

et al. (2007). Upon arriving at a ticket queue, each customer is issued a numbered

ticket. The number currently being served is displayed. The queue length is not
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known to ticket-holding customers or even to system managers, because they do

not observe customer abandonments.

Finally, the system is often much more complicated: For one example, there may be

multiple customer classes and multiple service pools with some form of skill-based

routing (SBR); see Gans et al. (2003). For a second example, with web chat,

servers may serve several customers simultaneously, different servers may participate

in a single service, and there may be interruptions in the service times, as the

customers explore material on the web in between conversations with agents. For

a third example, when delays are large – which is when we most want to make

delay announcements – customers often abandon from queue; see chapter 3. In

these more complicated settings, the queue length is typically known, but the rate

customers enter service if often not known and/or difficult to estimate reliably. That

causes problems for the QL predictor.

When the GI=M=s model is not appropriate for one of these reasons, the QL pre-

dictor may not perform well.

2.1.7 Example (non-exponential service times)

To dramatically illustrate the possible difficulties with the QL delay predictor in

the presence of a non-exponential service-time distribution (without trying to be

realistic), we consider a limiting hyperexponential (H2) distribution, in which each

service time is either an exponential with mean 10, with probability 1=10, or the

deterministic value 0, with probability 9=10. Thus the service time has mean 1, but

busy servers will only be serving customers with the exponential distribution. Let s =
100 and suppose that an arrival finds the queue empty but all the servers busy. Then

the QL delay prediction for this new arrival is 1=s = 1=100, but the actual delay is
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exponentially distributed with mean 1=10 (the minimum of 100 exponential random

variables, each with mean 10). Hence, the actual mean delay is ten times greater

than predicted by the QL delay predictor. Consistent with this extreme example, we

have found that our alternative delay predictors actually outperform the QL delay

predictor in the D=H2=100 model with moderately variable H2 distributions.

Similarly, when there is a large amount of customer abandonment, the QL predictor

will tend to overestimate the potential delay (the delay assuming that the customer

has infinite patience), because many customers in queue may abandon before en-

tering service, and the standard QL predictor fails to take that into account. As

discussed in Whitt (1999a), the QL predictor can be revised to provide an accurate

prediction of delays with abandonments when the time-to-abandon distribution is

exponential. However, as discussed in Whitt (2006), the performance measures in

the overloaded M=M=s+GI model, with non-exponential time-to-abandon distribu-

tion, depend strongly on the time-to-abandon distribution beyond its mean. Since

the time-to-abandon distribution has been found to be non-exponential in practice,

see Brown et al. (2005), there also are potential difficulties with the generalized

QL predictor based on the M=M=s + M model. We investigate alternative delay

predictors in the presence of abandonments in chapter 3. There we give examples

with non-exponential distributions in which both the standard QL predictor and the

refinement for the M=M=s +M model are outperformed by delay predictors based

on recent delay history.

From the above discussion, we conclude that other predictors besides the standard

QL predictor are worth considering; we do not conclude that the standard QL

predictor or other predictors based on the queue length are necessarily bad. Indeed,

we will show advantages of the QL predictor when it can be used.
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2.1.8 This Study

Here, we study the performance of the delay predictors based on delay history in the

relatively simple idealized setting of the GI=M=s model. Motivated by call centers,

we are especially interested in the case of large s, but we consider all possible s.
We find that the conditional distribution of the delay to be predicted, given the

observed past delay, is often approximately normally distributed, implying that the

conditional distribution is approximately characterized by its mean and variance. The

observed delay is the natural direct predictor of the delay to be encountered by the

new arrival, while the mean of the conditional distribution of the delay of the new

arrival, given that observed delay, is a natural refined predictor based on the same

information. (In general, these are different!) The refined predictor depends on the

model and its parameters. Since the conditional mean is complicated, we develop

approximations for it.

For the GI=M=s model, we will show that the QL predictor does indeed perform

better than the alternative predictors based on recent delays, and we will quantify

the difference. Roughly, the MSE differs by the constant factor c2a + 1, where c2a
is the squared coefficient of variation (SCV, variance divided by the square of the

mean) of an interarrival time. Thus, the MSE’s of the delay-history predictors are

about the same as the MSE of the QL predictor when the arrival-process variability

is low, but considerably greater when the arrival-process variability is high.

2.1.9 Organization of the Chapter

We start in §2.2 by defining alternative delay predictors based on recent delay history

and giving some expressions for them for the GI=M=s model. We present results
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of initial simulation experiments in §2.3. We establish properties of two basic delay

predictors – LES and the Head-of-the-Line (HOL) predictor – in §2.4. We present

confirming simulations related to those analytical results in §2.5. We establish

heavy-traffic limits for some predictors in §2.6. We make concluding remarks in

§2.7. We present additional simulation results in the appendix.

2.2 Alternative Predictors

2.2.1 The No-Information (NI) Steady-State Predictor

The candidate delay predictors differ depending on the information used. If no

information at all is used beyond the model, then it is natural to use the steady-

state distribution. In particular, with W1 denoting the steady-state waiting time

before beginning service, the no-information (NI) steady-state delay predictor for a

customer that must wait before beginning service is �NI � E[(W1jW1 > 0)]. It

serves as a useful reference point. Any other predictor exploiting additional real-time

information should do at least as well to be worth serious consideration.

For the GI=M=s model, it is well known that (W1jW1 > 0) has an exponential

distribution – see §XII.3 of Asmussen (2003) – so that the SCV is 1. Since the SCV

is 1, the NI predictor is quite highly variable, and so necessarily has low predictive

power. For the M=M=s special case, the mean is 1=s(1 � �), so that MSE =
V ar((W1jW1 > 0)) = 1=s2(1� �)2.
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2.2.2 The Full-Information Queue-Length (QL) Delay Predictor

The other extreme would be full-information at the arrival epoch, which we take to

mean that we know: (i) the queueing model, (ii) the number of customers in the

system at that arrival epoch and (iii) the elapsed service times of all customers in

service. If we knew the remaining service times as well, then we could compute the

exact delay, but we assume that the remaining service times are unknown. Of course,

for exponential service times, the elapsed service times give no useful information

about the remaining service times because of the lack-of-memory property of the

exponential distribution. Thus the (full-information) queue-length (QL) predictor

for the GI=M=s model only exploits the queue-length Q(t) and knowledge of the

model.

Let WQ(n) represent a random variable with the conditional distribution of the

delay of a new arriving customer at some time t, given that the arriving customer

must wait before starting service and given that the queue length at that time (not

counting the new arrival) is Q(t) = n. (For n � 1, the customer must necessarily

wait; for n = 0 our conditioning implies that all servers are busy but the queue

length is 0.) For the GI=M=s model, the random variable WQ(n) can be represented

as

WQ(n) �
n+1∑
i=1 (Si=s) ; (2.5)

when Q(t) = n. The natural QL delay predictor, based on the observed queue

length Q(t) = n, is the mean �QL(n) � E[WQ(n)] = (n + 1)=s. The QL predictor

requires knowledge of s and the mean service time E[S] (here taken to be 1) as well

as Q(t).
We have the division by s in (2.5) because the times between successive service

completions when all servers are busy are i.i.d. random variables distributed as
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the minimum of s exponential random variables, each with mean 1, which makes

the minimum exponential with mean 1=s. It is significant that this predictor is

independent of the arrival process and thus also of the traffic intensity. It applies

equally well to steady-state and transient settings.

As discussed in Whitt (1999a), WQ(n) has the desirable property that the prediction

gets relatively more accurate as the observed queue length n increases:

E[WQ(n)] = n + 1
s ; V ar [WQ(n)] = n + 1

s2
and c2WQ(n) � V ar [WQ(n)](E[WQ(n)])2 = 1

n + 1 ; (2.6)

so that c2WQ(n) ! 0 as n !1.

Thus, whenever the queue length is large, the QL predictor E[WQ(n)] will be rel-

atively accurate. If we consider heavy-traffic regimes, where the queue length ap-

proaches infinity, as we will do later, then this QL delay predictor will perform well.

For example, the halfwidth of a 95% confidence interval is about 2=pn, which is

about 20% of a mean conditional waiting time when n = 100. Such a large value

of n is not uncommon when s too is large.

For the M=M=s model, there is a simple expression for the average MSE in steady

state, which helps judge the performance of other predictors; the MSE’s for the

other delay predictors should all fall between the QL predictor (best possible) and

the NI predictor (worst possible, knowing the model). Let Qw1 be a random variable

with the conditional distribution of the steady-state queue length upon arrival given

that the customer must wait before beginning service. In the M=M=s model, Qw1+1
has a geometric distribution with mean 1=(1� �). That is easily deduced from the

time reversibility of the M=M=s model, which implies that Qw1 has the steady state

distribution of the number in system in an M=M=1 queue with traffic intensity �;
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e.g., see Proposition 5.6.3 of Ross (1996). Hence,

E[MSE(WQ(Qw1))] �
1∑
n=0MSE(WQ(n))P (Qw1 = n) (2.7)

= E[V ar(WQ(Qw1))]
= 1
s2(1� �) ;

so that the ratio between the worst possible NI MSE and the best possible QL MSE

is

MSE(�NI)MSE(�QL(Qw1)) = V ar(W1jW1 > 0)
E[V ar(WQ(Qw1))] = 1=s2(1� �)2

1=s2(1� �) = 1
1� � : (2.8)

For example, a case of principle interest for call centers has s = 100 and � = 0:95.
Then the average MSE for NI is 20 times greater than the average MSE for QL.

We will show that the delay-history predictors produce a corresponding ratio of

approximately c2a + 1 = 2.

2.2.3 The Last Customer to Enter Service (LES)

The first candidate direct delay predictor is the delay (before starting service) of the

last customer to enter service (LES). The direct LES predictor is appealing because

it is relatively easy to obtain and interpret, but there also are a variety of refined

LES predictors we can consider; all are based on the LES observation.

To a large extent, the alternative refined LES delay predictors (and others as well)

are obtained by replacing the known queue length n in (2.5) by random variables that

estimate the queue length, based on the available delay history. Let WLES(w; d) be

the delay of a new arrival, given that the new arrival must wait before starting service
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and given that the last customer to enter service experienced delay w before entering

service and there was elapsed time d since that customer entered service. Let ta be

the arrival epoch of the new customer and te be the time the last customer entered

service prior to ta. (Throughout this paper we use the fact that, almost surely, no

two events – arrivals or service completions – will occur simultaneously.) Necessarily,

d = ta � te and te � w is the arrival epoch of the customer entering service at te.
With Poisson arrivals, a key observation is that the queue length at time te must

be distributed as A(w), because customers enter service from the queue in order of

arrival. However, WLES(w; d) has a relatively complicated exact distribution, even

with Poisson arrivals, because we do not know precisely what happens in the interval

[te; ta].
If we impose an extra condition, then this random variable WLES(w; d) has a rela-

tively simple distribution. The extra condition is that the epoch te is also simulta-

neously the last service completion prior to ta. That extra condition will necessarily

hold if at least one customer remains in the queue at time te. In turn, that sufficient

condition is very likely to be satisfied if w is relatively large (the case of primary in-

terest). Under the extra condition that te is also the last service completion before

ta. With Poisson arrivals, we have the simple representation

WLES(w; d) �
A(w+d)+1∑

i=1 (Si=s) ; (2.9)

where the summands are i.i.d. and independent of A(w + d), because the queue

length seen by the new arrival at time ta will be A(w+d), the number of arrivals in the

interval of length w+d preceding the arrival epoch ta. With a general (not Poisson)

renewal arrival process, the analysis is complicated by conditioning on both arrival

epochs, ta and te � w , which may affect the distribution of the number of arrivals
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between those two epochs; e.g., see §2.2.4.1 for an example. In general, we think of

the arrival process as if it were Poisson. Formula (2.9) allows us then to characterize

the distribution of WLES(w; d). Just like (2.5), (2.9) requires knowledge of s and

the mean service time as well as w . Here we also require knowledge of the renewal

arrival process or, equivalently, the interarrival-time distribution.

An important reference point for the refined LES predictor in (2.9) is the D=M=s
model, with a deterministic arrival process, having constant interarrival times, be-

cause under the extra condition leading to (2.9), we then have WLES(w; d) =
WQ(Q(ta)), since A(w + d) = Q(ta), making (2.5) coincide with (2.9). Thus we

see that the loss of efficiency in going from QL to LES (direct or refined) is primarily

due to the variability in the arrival process.

We assume that the experienced LES waiting time w is always available, but we

might not know d , so that we might want to consider as an alternative refined

predictor the mean of the random variableWLES(w), which assumes d is unavailable,

but dropping d makes the distribution even more complicated. If we can assume

that w >> d , then there should be negligible difference. In general, we have the

natural approximations based on (2.9):

WLES(w) � A(w+(S0=s))+1∑
i=1 (Si=s) �

A(w+(1=s))+1∑
i=1 (Si=s) ; (2.10)

where S0 is an exponential random variable with mean 1 independent of Si for i � 1,
because the time between successive service completions when all servers are busy

is distributed as S0=s. (Assuming that the queue is nonempty at time te, that time

is a service completion epoch. Then d is the age of the Poisson all-servers-busy

departure process with rate s under Poisson inspection by the arrival process.) The

second approximation is obtained by inserting the expected value. It is also based
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on the extra condition, which will hold approximately for large w .

2.2.4 The Head-Of-The-Line (HOL) Predictor

A second candidate direct delay predictor, which is closely related to the direct LES

predictor, is the elapsed waiting time of the customer at the head of the line (HOL)

(queue), assuming that there is at least one customer waiting at the new arrival

epoch. The direct HOL delay predictor was used as an announcement in an Israeli

bank studied by Mandelbaum et al. (2000) and mentioned as a candidate delay

announcement by Nakibly (2002). It is appealing compared to LES because the

conditional distribution of the delay to be predicted is more tractable given the HOL

information.

The customer at the head of the line will enter service after the next service comple-

tion. That remaining time is exponential with mean 1=s. Let WHOL(w) be a random

variable with the conditional distribution of the waiting time (before starting service)

of a new arrival given that the new arrival must join the queue, given that there

already is at least one customer in queue, and given that the customer at the head

of the line has already spent time w in queue. The random variable WHOL(w) is

closely related to the random variable WLES(w; d), but has the advantage that we

do not need to use d . Moreover, we do not need to impose the extra condition that

we made for WLES(w; d), but instead we need to impose a new one: The extra

condition now is the assumption that there is at least one customer in queue at the

arrival epoch ta; otherwise there would be no customer at the head of the line. We

propose the random variable WHOL(w) as an approximation for the random variable

WLES(w) where we omit the lag d , as well as for its own sake. Closely paralleling
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the previous formulas, with a Poisson arrival process, we have

WHOL(w) � A(w)+2∑
i=1 (Si=s) : (2.11)

2.2.4.1 WHOL(w) with a renewal (non-Poisson) arrival process

Formula (2.11) is exact with a Poisson arrival process and is an approximation more

generally. Indeed, if we condition on the current time being an arrival epoch, then

given the observed HOL delay w , we know that the current HOL customer and the

new arriving customer are exactly w time units apart. For a general interarrival-time

distribution, this adds extra information and considerably complicates the analysis.

To illustrate, suppose that the interarrival-time distribution is a mixture of two

distributions. With probability 0:999, the interarrival time is exponential with mean

1, and with probability 0:001 it is the deterministic value M >> 1. If the HOL delay

w at an arrival epoch is equal to M, then we know with probability 1 that there

must have been 0 arrivals between the HOL arrival and the new arrival (and that

the new arrival must wait for exactly 2 service completions to begin service). That

is, conditioning on both arrival epochs changes the distribution of the number of

arrivals between those epochs, and formula (2.11) no longer applies.

In this work, we approximate the renewal arrival process by a Poisson process, with

the same interarrival-time mean, in which case formula (2.11) is exact. We can

also take an alternative view for which formula (2.11) is exact even with a general

interarrival-time distribution. Indeed, we can think of predicting delays in continuous

time, thus making predictions at time t for a hypothetical arrival at time t. With

a continuous-time view, we avoid conditioning on t being an arrival epoch, thus

simplifying the analysis.
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2.2.5 The Delay of the Last Customer to Complete Service

(LCS)

A third candidate direct delay predictor is the delay of the last customer to complete

service (LCS). We naturally would want to consider this alternative predictor if we

only learn customer delay experience after they complete service. That might be

the case for customers and outside observers.

Let WLCS(w; v ; d) be the delay of a new arrival, given that the new arrival must

wait before starting service and given that the last customer to complete service

experienced delay w before entering service, had individual service time v , and there

was elapsed time d since that customer completed service. As before, let ta be the

arrival epoch of the new customer; let tc be the time the last customer completed

service prior to ta. The mean of the random variable WLCS(w; v; d) is a natural

refined predictor, but this random variable has a relatively complicated distribution.

Some data may be unavailable, so that we may want to consider as alternative

refined predictors the means of the random variables WLCS(w; d), which assumes

v is unavailable, and WLCS(w), which assumes that neither v nor d is available.

Dropping v or the pair (v ; d) makes the representation even more complicated.

2.2.6 The Delay of the Most Recent Arrival to Complete Service

(RCS)

Under some circumstances, the LCS and LES direct predictors will be similar, but

they actually can be very different when s is large, because the last customer to

complete service may have experienced his waiting time much before the last cus-

tomer to enter service. We emphasize that customers need not depart in order of
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arrival. Indeed, with exponential service times, when all s servers are busy, each of

the s servers is equally likely to generate the next service completion. Thus, for

large s the LCS predictor is not really a viable alternative, as we will show. Conse-

quently, we propose other candidate delay predictors based on the delay experience

of customers that have already completed service. The first is the delay experienced

by the customer that arrived most recently (and thus entered service most recently)

among those customers who have already completed service (RCS). We find that

RCS is far superior to LCS when s is large.

2.2.7 Among the Last cps Customers to Complete Service

(RCS -cps)

A disadvantage of the RCS predictor is that we must analyze a lot of data, going

arbitrarily far back in the past. From heavy-traffic analysis in §2.6, we deduce that

the most recent arrival time of a customer that has completed service is very likely

to occur among the last cps customers when s is large (and the system is normally

loaded). So we introduce a new predictor, which requires less information processing:

Let RCS-cps be the delay of the customer to have arrived most recently among

the last cps customers who have already completed service. Clearly, these last

three predictors LCS, RCS and RCS-cps are complicated, so that we primarily rely

on simulation to evaluate their relative performance. Through extensive simulation

experiments, we found that the average squared error of RCS-cps is essentially

identical to that of RCS when c = 4, differs by at most 1% when c = 2 and differs

by at most 10% when c = 1; for corresponding simulation results, see the appendix.
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2.2.8 Averages

Our main predictors are individual delays experienced by a recent customer, rather

than an average over many past delays. Only the no-information steady-state pre-

dictor (W1jW1 > 0) can be said to use averages. We can extend the LES, LCS,

RCS and RCS-cps predictors to get LES-k , LCS-k , RCS-k and RCS-cps � k by

averaging over the last k experienced delays. With the exception of LCS with large

s (which does not have desirable properties), we have found that averages do not

help, when the delays are relatively large (the case of primary interest to us). There

is a simple explanation: When delays are large, the delays change relatively slowly

compared to the size of the delays. Theoretically, this can be explained by the

heavy-traffic snapshot principle; see Section 2.6. In this setting it is better to use

recent information than to eliminate noise by averaging.

2.3 Initial Simulation Experiments: Comparing the

Predictors

In this section we present initial simulation experiments, aiming to compare the

alternative predictors defined in §2.2. We focus on the average squared error (ASE)

of the predictor, defined in (2.4). For large samples, the ASE should agree with the

MSE in steady state.

2.3.1 Overall Performance of the Predictors

Table 2.1 shows the ASE’s for seven different delay predictors in the GI=M=s model

with s = 100. Tables 2.2 and 2.3 shows the ASE’s of the same predictors with
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s = 10 and s = 1, respectively. We consider three categories of predictors: (i)

the two reference predictors QL and NI, (ii) the direct delay predictors LES and

HOL, and (iii) the three predictors based on delays of customers who have already

completed service - LCS, RCS and RCS-
ps. We consider three interarrival-time

distributions - M, D and H2 - and four values of the traffic intensity � - 0:98, 0:95,
0:93 and 0:90. The H2 distribution has SCV c2a = 4 and balanced means (the two

component exponential distributions contribute equally to the mean). We performed

10 independent replications of long runs in each case. The half width of the 95%
confidence interval is shown below each estimate. Corresponding results for other

values of s - 400 and 900 - are contained in the appendix.

2.3.2 The Case with s = 100

The predictors appear in Table 2.1 with the better performance toward the left; i.e.,

in terms of efficiency (low ASE), the predictors are ordered by

QL > LES � HOL > RCS � RCS �ps > LCS > NI : (2.12)

As expected, the full-information QL predictor performs best, while the no-information

NI predictor performs worst. The performance of LES and HOL are very close,

while the performance of RCS and RCS-
ps are very close. The QL predictor

is significantly better than LES; LES is slightly better than RCS; RCS is signif-

icantly better than LCS; and LCS is significantly better than NI. Very roughly,

ASE(LES)=ASE(QL) � (c2a + 1)=�, so LES performs nearly as well as QL for

low-variability arrival processes such as the D arrival process, but much worse for

high-variability arrival processes such as the H2 arrival process. We display the cor-

responding estimated ASE’s for the same predictors for the GI=M=s models with
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Estimated ASE in units of 10�3
M=M=s model with s = 100� QL LES HOL RCS RCS-

ps LCS NI
0.98 5.03 10.2 10.2 12.5 12.9 26.7 255�0:02 �0:05 �0:05 �0:05 �0:05 �0:06 �36
0.95 2.04 4.3 4.3 6.4 6.7 16.5 41.8�0:02 �0:05 �0:05 �0:05 �0:05 �0:06 �2:7
0.93 1.44 3.07 3.08 5.06 5.32 13.1 20.8�0:002 �0:003 �0:003 �0:003 �0:003 �0:13 �1:2
0.90 0.99 2.2 2.2 3.9 4.2 9.4 9.7�0:003 �0:006 �0:006 �0:008 �0:009 �0:27 �0:7

D=M=s model with s = 100� QL LES HOL RCS RCS-
ps LCS NI

0.98 2.48 2.62 2.62 3.77 3.94 10.3 61.5�0:05 �0:05 �0:05 �0:05 �0:05 �0:11 �3:9
0.95 1.01 1.15 1.15 2.20 2.34 6.38 10.1�0:02 �0:02 �0:02 �0:03 �0:03 �0:12 �0:40
0.93 0.73 0.87 0.87 1.85 1.96 4.90 5.20�0:02 �0:02 �0:02 �0:03 �0:03 �0:13 �0:32
0.90 0.52 0.67 0.66 1.54 1.63 3.44 2.68�0:015 �0:016 �0:017 �0:035 �0:037 �0:15 �0:23

H2=M=s model with s = 100� QL LES HOL RCS RCS-
ps LCS NI

0.98 12.4 60.4 60.4 66.1 67.0 103.4 1505�0:70 �3:2 �3:2 �3:2 �3:2 �34:0 �226
0.95 4.82 22.5 22.5 27.7 28.4 56.3 243.3�0:095 �0:46 �0:47 �0:45 �0:45 �0:58 �22:7
0.93 3.44 15.5 15.5 20.4 21.1 44.5 121.4�0:094 �0:44 �0:44 �0:49 �0:50 �1:02 �10:2
0.90 2.35 10.2 10.2 14.6 15.2 33.1 55.4�0:040 �0:21 �0:21 �0:24 �0:24 �0:53 �2:9

Table 2.1: A comparison of the efficiency of different real-time delay predictors for the GI=M=100
queue as a function of the traffic intensity � and the interarrival-time distribution (M, D and H2).
Only the direct predictors are considered. Estimates of the average squared error ASE are shown
together with the half width of the 95% confidence interval. The units are 10�3 throughout. The
ASE’s are measured in units of mean service time squared per customer.
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Estimated ASE in units of 10�1
M=M=s model with s = 10� QL LES HOL RCS RCS-

ps LCS NI
0.98 4.95 10.1 10.1 10.8 10.9 11.9 257.2�0:23 �0:42 �0:41 �0:41 �0:42 �0:41 �48:1
0.95 1.98 4.16 4.17 4.83 4.94 5.87 39.61�0:025 �0:040 �0:042 �0:039 �0:041 �0:041 �2:3
0.93 1.42 3.03 3.05 3.67 3.77 4.62 20.01�0:013 �0:032 �0:037 �0:036 �0:033 �0:036 �0:66
0.9 1.00 2.19 2.20 2.79 2.88 3.63 10.10�0:017 �0:033 �0:042 �0:036 �0:035 �0:036 �0:49

D=M=s model with s = 10� QL LES HOL RCS RCS-
ps LCS NI

0.98 2:49 2:63 2:63 2:99 3:05 3:57 59.3�0:084 �0:083 �0:086 �0:085 �0:086 �0:086 �10:2
0.95 1:01 1:16 1:16 1:50 1:55 2:00 10.1�0:018 �0:018 �0:020 �0:019 �0:019 �0:019 �0:83
0.93 0:730 0:876 0:877 1:21 1:26 1:66 5:24�0:010 �0:011 �0:013 �0:012 �0:011 �0:012 �0:29
0.9 0:518 0:663 0:663 0:977 1:02 1:37 2:66�0:0058 �0:0057 �0:0091 �0:0077 �0:0066 �0:0078 �0:12

H2=M=s model with s = 10� QL LES HOL RCS RCS-
ps LCS NI

0.98 12.8 62.6 62.6 64.4 65.1 67.3 1594�0:69 �4:0 �4:1 �4:1 �4:1 �5:6 �258
0.95 4:81 22:3 22:3 23:9 24:6 26:5 229�0:081 �0:47 �0:48 �0:47 �0:47 �0:81 �9:1
0.93 3.42 15.4 15.4 17.0 17.5 19.4 115�0:069 �0:35 �0:37 �0:35 �0:35 �0:35 6:8
0.9 2.34 10.1 10.1 11.6 11.8 13.7 54.4�0:036 �0:18 �0:20 �0:19 �0:18 �0:18 �2:9

Table 2.2: A comparison of the efficiency of different real-time delay predictors for the GI=M=10
queue as a function of the traffic intensity � and the interarrival-time distribution (M, D and H2).
Only the direct predictors are considered. Estimates of the average squared error ASE are shown
together with the half width of the 95% confidence interval. The units are 10�1 throughout. The
ASE’s are measured in units of mean service time squared per customer.
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Estimated ASE

M=M=s model with s = 1� QL LES HOL RCS RCS-
ps LCS NI

0.95 20:1 42:2 42:4 44:1 44:1 44:1 405:0�0:42 �0:77 �0:79 �0:78 �0:78 �0:78 �23:4
0.93 14:4 30:6 30:7 32:4 32:4 32:4 207:5�0:19 �0:37 �0:39 �0:37 �0:37 �0:37 �10:4
0.9 9:99 21:8 22:0 23:5 23:5 23:5 100:6�0:084 �0:19 �0:21 �0:19 �0:19 �0:19 �3:4

0.85 6:68 15:1 15:4 16:6 16:6 16:6 44:9�0:043 �0:093 �0:095 �0:010 �0:010 �0:010 �0:88
D=M=s model with s = 1� QL LES HOL RCS RCS-

ps LCS NI
0.95 10.1 11.6 11.6 12.6 12.6 12.6 101.1�0:15 �0:15 �0:16 �0:15 �0:15 �0:15 �7:2
0.93 7.32 8.79 8.79 9.73 9.73 9.73 52.7�0:081 �0:078 �0:086 �0:080 �0:080 �0:080 �2:4
0.9 5.19 6.64 6.65 7.56 7.56 7.56 26.8�0:038 �0:037 �0:041 �0:040 �0:040 �0:040 �0:94

0.85 3.53 4.96 4.95 5.82 5.82 5.82 12.4�0:018 �0:018 �0:020 �0:020 �0:021 �0:020 �0:36
H2=M=s model with s = 1� QL LES HOL RCS RCS-

ps LCS NI
0.95 48.7 226.4 226.5 231.1 231.1 231.1 2339�1:13 �5:14 �5:23 �5:15 �5:15 �5:15 �425
0.93 34.3 154.4 154.4 158.9 158.9 158.9 1151�0:63 �2:9 �2:9 �3:0 �3:0 �3:0 �181
0.9 23.48 101.3 101.4 105.5 105.5 105.5 552.9�0:37 �2:3 �2:4 �2:4 �2:4 �2:4 �103

0.85 14.95 60.0 60.2 63.9 63.9 63.9 224.4�0:104 �0:52 �0:53 �0:51 �0:51 �0:51 �6:2
Table 2.3: A comparison of the efficiency of different real-time delay predictors for the GI=M=1
queue as a function of the traffic intensity � and the interarrival-time distribution (M, D and H2).
Only the direct predictors are considered. Estimates of the average squared error ASE are shown
together with the half width of the 95% confidence interval. The ASE’s are measured in units of
mean service time squared per customer.



Chapter 2. Delay Prediction in the GI=M=s Model 43

s = 10 and s = 1 in Tables 2.2 and 2.3, but do not discuss those results here. In

broad terms, the predictor LCS fares better as s decreases. The ASE’s of LCS and

RCS do not differ greatly for s = 10 and are identical for s = 1.
It is instructive to look at the relative average squared error (RASE), which is

obtained by dividing the ASE by E[W1jW1 > 0]2, because the associated steady-

state relative mean squared error (RMSE), defined as MSE=E[W1jW1 > 0]2, is

linear as a function of � for the QL predictor: RMSE(QL) = (1� �). (The RMSE

is identically 1 for the NI predictor.) We show the RASE plots for the D=M=100
model in Figure 2.1. The LES and HOL predictors are virtually identical (with the

plots lying on top of each other), so we only show LES. Both LES and HOL are

nearly as good as QL and much better than RCS; LCS is so bad that it is not even

shown. We display the RASE’s for the M=M=100 and H2=M=100 models in Figures

2.2 and 2.3. Again we see linear or near-linear performance as a function of �. The

advantage of QL over LES increases as c2a increases.

2.3.3 Performance Conditional on the Level of Delay

Since delay predictions are more relevant when the observed delays in the system

are longer, it is natural to consider the behavior of the predictors for larger delays.

We have complemented the experiments described above by considering how the

delay predictors perform when we only consider actual delays that fall in one of

the intervals: (E[W jW > 0]; 2E[W jW > 0]), (2E[W jW > 0]; 4E[W jW > 0]),
(4E[W jW > 0]; 6E[W jW > 0]) and (6E[W jW > 0];1). Table 2.4 illustrates

the results for the M=M=100 model when the observed delays fall in the interval

(4E[W jW > 0]; 6E[W jW > 0]). The performance of the predictors for these

larger delays is approximately as in Table 2.1. Other cases appear in the appendix.
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Figure 2.1: The relative average squared error (RASE) for the D=M=100 model.

Experience shows that the NI predictor performs especially poorly in very heavy

traffic, while LCS performs especially poorly with large s in light traffic. For large s
and small �, LCS even performs worse than the NI predictor. There is only one case

in Table 2.4; more cases can be seen when s = 400 and s = 900 in the appendix.

2.4 Analysis of the HOL and LES Predictors

The representation (2.11) allows us to characterize the probability distribution of

the random variable WHOL(w), which we do both for its own sake and as an approx-

imation for the random variables WLES(w) and WRCS(w). When we use the HOL
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Figure 2.2: The relative average squared error (RASE) for the M=M=100 model.

predictor, we assume that there is at least one customer in queue at the new arrival

epoch ta. Very similar formulas hold for the LES predictor based on formula (2.9),

under the extra assumption given there. Since the formulas are virtually identical,

we do not display separate results for LES.

We emphasize that the random variable WHOL(w) applies to both transient and

steady-state scenarios. We can have arbitrary traffic intensity �, including � > 1,
under which there is no proper steady state. We assume that the renewal arrival

process fA(t) : t � 0g and the traffic intensity � are specified and unchanging in

the interval [ta � w; ta], which is the relevant system history for our prediction at

time ta.
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Figure 2.3: The relative average squared error (RASE) for the H2=M=100 model.

We start by showing that the distribution of WHOL(w) depends on s in a relatively

simple way. For that purpose, we introduce an extra subscript s to indicate the

dependence upon s, getting WHOL;s(w). Let d= denote equality in distribution.

Theorem 2.4.1 (dependence upon s) For the GI=M=s model,

WHOL;s(w) d= WHOL;1(sw)
s (2.13)

for all �, w and s.
Proof. We show the equality in distribution by establishing equality w.p.1 for a

special construction. We construct a convenient family of systems indexed by s.
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Conditional ASE for the M=M=100 model in units of 10�3
Observed delays in between 4E[W jW > 0] and 6E[W jW > 0]� QL LES HOL RCS RCS-

ps LCS NI
0.99 49.4 86.6 86.3 89.4 90.1 108.8 11,586�7:0 �6:9 �6:9 �7:2 �7:2 �10:2 �1250
0.98 24.8 47.5 47.3 50.1 50.6 69.6 3,542�1:8 �3:1 �3:0 �3:1 �3:1 �3:7 �431
0.95 10.5 20.4 20.1 23.5 24.0 50.4 564�0:23 �0:63 �0:62 �0:82 �0:80 �3:3 �27
0.93 7.54 15.2 14.9 18.7 19.3 52.0 286�0:20 �0:31 �0:29 �0:43 �0:45 �3:2 �8:0
0.90 5.62 11.1 10.7 15.3 16.1 50.9 137.4�0:21 �0:38 �0:38 �0:61 �0:66 �25:2 �6:7

Table 2.4: A comparison of the efficiency of different real-time delay predictors conditional on the
level of delay experienced for theM=M=100 model as a function of the traffic intensity �. Actual delays
are considered that fall in the interval (4E[W jW > 0]; 6E[W jW > 0]). Estimates of the conditional
average squared error ASE are shown together with the half width of the 95% confidence interval.
The units are 10�3 throughout. The ASE’s are measured in units of mean service time squared per
customer.

For each s, let the service times be exponential random variables Sn with mean 1
as before. Start by defining interarrival times Un with mean 1=� to use for the case

of s = 1. Then in the system with s > 1, let the nth interarrival time be Un=s.
Let fAs(t) : t � 0g be the renewal counting process in system s, having interarrival

times Un=s. Then As(w=s) = A1(w) for all s and w ; since we have re-scaled the

interarrival times, we just re-scale time in the associated renewal counting process.

This construction yields equality for the random variables in (2.13) and all w � 0.
Since the distribution is independent of the construction, that implies the claimed

relation (2.13).

We now show that we get relatively simple asymptotic expressions characterizing

the distribution of WHOL;s(w) when sw !1. That applies when w !1 for fixed

s, but it also can apply when s " 1 and w # 0, as occurs in the QED many-server
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heavy-traffic limiting regime, to be discussed in §2.6; then w = O(1=ps) so that

sw !1 while w ! 0.
Let N(m;�2) denote a normally distributed random variable with mean m and vari-

ance �2. Let ) denote convergence in distribution.

Theorem 2.4.2 (distribution of WHOL;s(w)) Consider the GI=M=s queue with traf-

fic intensity � operating in the time interval [ta � w; ta]. (a) For any � > 0, s � 1
and w > 0,

E[WHOL;s(w)] = E[A(w)] + 2
s (2.14)

and

V ar [WHOL;s(w)] = E[A(w) + 2]V ar(S=s) + V ar(A(w) + 2)(E[S=s])2: (2.15)

(b) If the arrival process is Poisson, then

E[WHOL;s(w)] = �w + 2
s (2.16)

and

V ar [WHOL;s(w)] = 2�w
s + 2

s2 ; (2.17)

so that

c2WHOL;s(w) = 2
�sw � 6

(�sw)2 +O
( 1
(�sw)3

)
as sw !1 : (2.18)

(c) For a general renewal arrival processes with a non-lattice interrenewal-time dis-

tribution, if sw !1, then

sE[WHOL;s(w)]� �sw ! (c2a + 3)
2 ; (2.19)
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WHOL;s(w)
w ! � w. p. 1 and

E[WHOL;s(w)]
w ! � ; (2.20)

s2V ar(WHOL;s(w))� �sw(c2a + 1)!
(5(c2a + 1)2

4 � 2�3a3 + 1
)
; (2.21)

s2E[(WHOL;s(w)� �w)2]� �sw(c2a + 1)! K ; (2.22)

s2E[(WHOL;s(w)�w)2]�(sw)2(1��)2�sw [(2�� 1)c2a + 4�� 3]! K ; (2.23)

where

K � K(c2a ; �3a ) �
(3c4a2 + 4c2a + 9

2 �
2�3a3

)
; (2.24)

swc2WHOL;s(w) ! c2a + 1
� and

WHOL;s(w)� �w√�w(c2a + 1)=s ) N(0; 1) : (2.25)

Proof. Since WHOL(w) in (2.11) is a random sum of i.i.d. random variables, where

A(w) is independent of the summands Si=s, we have (2.14). Formula (2.15) follows

from the conditional variance formula, e.g., p. 51 of Ross (1996). For (2.18), we

use elementary operations on series, as in 3.6.22 in Abramowitz and Stegun (1972).

When we let sw increase, we first apply Theorem 2.4.1 to reduce the analysis to the

case s = 1. Henceforth assume that s = 1. When we restrict attention to s = 1,
it suffices to simply let w !1. When we let w increase,

E[A(w) + 2]� �w ! (c2a + 1)
2 + 1 as w !1 ; (2.26)

see Corollary 3.4.7 of Ross (1996) or (2.7) and (2.8) of Whitt (1982a), which

review a classic result. Combining (2.26) and (2.14) gives (2.19), which immediately

implies the second limit in (2.20). For the w.p.1 limit in (2.20), we apply the strong

law of large numbers for the partial sums of Sn and the renewal arrival process A(w):
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With probability one,

∑ni=1 Sin ! E[S] = 1 and
A(w) + 2

w ! 1
E[U] = � ; (2.27)

so that ∑A(w)+2i=1 Siw = A(w) + 2
w �

∑A(w)+2i=1 SiA(w) + 2 ! � w. p. 1 : (2.28)

The asymptotic variance formula (2.21) follows from (2.15) and the asymptotic

form of the variance for a renewal process, e.g., as in (2.7) and (2.8) of Whitt

(1982a):

V ar(A(w) + 2) = V ar(A(w)) = �wc2a + 5(c2a+1)24 � 2�3a3 � (c2a+1)2 + o(1) (2.29)

as w !1 :

The associated limits (2.22) and (2.23) follow from (2.21). For (2.22), we use

E[(WHOL;s(w)� �w)2] = var(WHOL;s(w)� �w)) + (E[WHOL;s(w)� �w ])2
= var(WHOL;s(w)) + (E[WHOL;s(w)� �w ])2 : (2.30)

The calculation for (2.23) is similar. The first limit in (2.25) follows immediately

from (2.19) and (2.21). The central limit theorem in (2.25) follows from the central

limit theorem for renewal-reward processes, e.g., Theorem 7.4.1 of Whitt (2002).

We use the convergence-together theorem, Theorem 11.4.7 of Whitt (2002), to

justify neglecting the asymptotically negligible terms.

Remark 2.4.1 (exact values by numerical inversion) It is possible to exploit (2.14)

and (2.15) in order to compute the exact means and variances. To do so, we

can exploit numerical transform inversion of Laplace transforms, as discussed in
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§13 of Abate and Whitt (1992). The Laplace transform of E[A(t)] is m̂1(s) �
f̂ (s)=[s(1� f̂ (s)], where f̂ (s) is the Laplace transform of the density function of the

interarrival-time cdf F (here assumed to exist). The associated Laplace transform

of E[A(t)2] is 2m̂1(s)2 � m̂1(s), as can be seen from exercise XI.13 on p. 386 of

Feller (1971). Since we are interested in prediction for relatively large delays, we

will rely on the asymptotic approximations.

Remark 2.4.2 (nonhomogeneous Poisson arrival process) We can also analyze the

random variableWHOL;s(w) in the case of a nonhomogeneous Poisson arrival process

with intensity function f�(t) : t � 0g. The exact relations (2.16) and (2.17) have

natural extensions to that case. We again have representation (2.11), but now with

A(w) being a Poisson random variable having mean

ma(w) �
∫ ta
ta�w �(t) dt ; (2.31)

which depends on the arrival time ta and the intensity function as well as the expe-

rienced waiting time w . Unless we specify how the intensity function behaves, we

have no simple asymptotic story as w increases, though. For more on the analysis

of the HOL predictor with time-varying arrivals, see chapter 4

Theorem 2.4.2 shows that the first-order asymptotic behavior of the random variable

WHOL;s(w) as sw increases depends on the general interarrival-time distribution F
only through its first two moments or, equivalently, through the mean E[U] =
1=�s and the SCV c2a . Equations (2.21) and (2.25) show that both the variance

V ar(WHOL;s(w)) and the SCV c2WHOL;s(w) are approximately proportional to c2a + 1
for large sw .

Theorem 2.4.2 shows that it may be useful to consider various refined predictors

instead of the direct predictor �dHOL � w . We would want to use the refined predictor



Chapter 2. Delay Prediction in the GI=M=s Model 52

�rHOL � E[WHOL;s(w)], because the mean necessarily minimizes the MSE, but we do

not have a convenient formula for the mean. Theorem 2.4.2 leads us to consider two

other refined predictors: the simple refined predictor �srHOL � �w and the asymptotic

refined predictor �arHOL � �w + (c2a + 3)=(2s), based on the the limit (2.19) as

sw ! 1. Note that the formulas for the mean and variance for Poisson arrivals

in (2.16) and (2.17) are exact, whereas the formulas for non-Poisson formulas are

only approximations.

For fixed � < 1, the three refined predictors �rHOL(w), �srHOL(w) and �arHOL(w) are

all relatively consistent and asymptotically relatively efficient as sw ! 1, whereas

the direct HOL predictor w has neither of these properties. By relatively consis-

tent, we mean that the ratio of the predictor to the quantity being predicted (here

WHOL;s(w)) converges to 1; by asymptotically relatively efficient, we mean that the

relative mean squared error (RMSE � MSE=Mean2) converges to 0.
At first glance, the simple refined predictor looks very appealing, because it com-

bines simplicity with good asymptotic properties. However, we found that the direct

predictor consistently outperforms the simple refined predictor in experiments eval-

uating the steady-state performance for typical parameter values. Evidently, the ex-

tra constant term in �arHOL helps. The following (somewhat loosely stated) theorem

supports that empirical observation. Let MSE(�HOL(W1)) denote the steady-state

MSE of the predictor �HOL(w) when w is averaged with respect to the conditional

delay (W1jW1 > 0), where W1 is the steady-state delay.

Theorem 2.4.3 (comparison of alternative HOL predictors) Consider the GI=M=s
queue with traffic intensity � < 1 in steady state. If the arrival process is Poisson or

if we take the limit in (2.19) as the exact mean, then the steady-state MSE’s are
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ordered by

MSE(�arHOL(W1)) < MSE(�dHOL(W1)) < MSE(�srHOL(W1)): (2.32)

Moreover,

MSE(�dHOL(W1))�MSE(�arHOL(W1))
= E

[((1� �)(W1jW1 > 0)� (c2a+3)2s
)2]

< (c2a+3)24s2 = MSE(�srHOL(W1))�MSE(�arHOL(W1)) : (2.33)

Proof. The MSE formulas in (2.33) are obtained by directly adding and subtracting

the mean inside the MSE formula, with the mean here regarded as being given by

(2.19). The key inequality in (2.33) follows from a bound on the mean steady-state

waiting time in the GI=M=1 queue. The conditional delay (W1jW1 > 0) in the

GI=M=s model has the same exponential distribution as in the GI=M=1 model; e.g.,

see p. 398 of Wolff (1989). Its mean is (1 � !)�1, where ! is the root of the

transform equation f̂ (1� !) = !, where f̂ (s) is the Laplace-Stieltjes transform of

the interarrival-time cdf. However, it is known that 1�! > 2(1� �)=(c2a +1); e.g.,

apply Theorem 2 of Whitt (1984), noting that in the D=M=1 queue 1�! > 2(1��),
which follows from elementary inequalities for the exponential function: e�2(1��) �
1 � 2(1 � �). From (2.33), we see that MSE(�dHOL(W1)) < MSE(�srHOL(W1)) if

and only if

E
[(

(1� �)(W1jW1 > 0)� (c2a + 3)
2s

)2] < (c2a + 3)2
4s2 ; (2.34)

which, upon expanding the quadratic and using the fact that the second moment is
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twice the square of the first moment, holds if and only if

E[W1jW1 > 0] < c2a + 3
s(1� �) ; (2.35)

which is implied by the delay bound.

To illustrate, we show numerical results in Tables 2.5 and 2.6 for the candidate delay

predictors �dHOL, �srHOL and �arHOL in the H2=M=s and M=M=s models, respectively,

with s = 100 and s = 1. We display the values of their approximate MSE’s in

steady state predicted by formulas (2.23), (2.22) and (2.21), and we show the

contributing terms, displayed in the order given in Theorem 2.4.2. In each case, one

term grows without bound as � increases while the other terms remains constant

or nearly constant. We take the expected value of each MSE formula, where w is

distributed randomly as the steady-state conditional delay (W1jW1 > 0). We use

the simulation estimates of the first two moments of the conditional delay. Table

2.5 is consistent with Theorem 2.4.3. As a consequence of Theorem 2.4.3, we

suggest using the asymptotic refined predictor �arHOL.
Paralleling Table 2.5, we show corresponding results for the M=M=s model with

s = 100 and s = 1 in Table 2.6. We have used simulation to estimate all quantities

here, even though we could compute them analytically. This case thus provides a

crosscheck on both our analytic formulas and the simulations.

We remark that the limit in (2.25) implies that WHOL;s(w) should be approximately

normally distributed when sw is not too small. Our simulation experiments show

that all the random variables WHOL;s(w), WLES;s(w) and WRCS;s(w) tend to be

normally distributed when sw is not too small.

We can combine (2.25) and (2.6) to compare the efficiency of the QL and refined

HOL predictors under high congestion. Let W (t) be the virtual waiting time at time
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Evaluating the alternative HOL predictors

Approximations in the H2=M=100 model� 0.88 0.92 0.96 0.98E[W jW > 0] 0.1902 0.2964 0.6114 1.307
conf. int. �0:0030 �0:0067 �0:029 �0:17E[W 2jW > 0] 0.07205 0.1761 0.7446 3.436
conf. int. �0:0022 �0:0095 �0:060 �0:67MSE(�d) 0.00826 0.0135 0.0293 0.0640

term 1 0.00103 0.00113 0.00119 0.00137
term 2 0.00677 0.0120 0.0276 0.0622
term 3 0.00045 0.00045 0.00045 0.00045MSE(�sr) 0.00882 0.00141 0.00298 0.0645
term 1 0.00837 0.0136 0.0293 0.0640
term 2 0.00045 0.00045 0.00045 0.00045MSE(�ar) 0.00759 0.0129 0.0286 0.0632
term 1 0.00837 0.0136 0.0293 0.0640
term 2 -0.000775 -0.000775 -0.000775 -0.000775

Approximations in the H2=M=1 model� 0.85 0.90 0.95 0.98E[W jW > 0] 15.01 23.50 48.64 115.7
conf. int. �0:18 �0:42 �1:6 �8:80E[W 2jW > 0] 446.2 1105.7 4707.1 25650.5
conf. int. �8:03 �39:2 �263:2 �3280MSE(�d) 62.59 104.9 230.3 565.7

term 1 10.04 11.06 11.76 10.26
term 2 48.04 89.3 214.0 550.9
term 3 4.5 4.5 4.5 4.5MSE(�sr) 68.31 110.3 235.5 571.6
term 1 63.81 105.8 231.0 567.1
term 2 4.5 4.5 4.5 4.5MSE(�ar) 56.06 98.02 223.3 559.3
term 1 63.81 105.8 231.0 567.1
term 2 -7.75 -7.75 -7.75 -7.75

Table 2.5: Evaluation of the MSE approximations for the predictors �dHOL, �srHOL and �arHOL in steady-
state using (2.23), (2.21) and (2.22) together with simulation estimates of the first two moments of
the conditional delay E[W1jW1 > 0]. The H2=M=s model is considered as a function of the traffic
intensity � for s = 100 and s = 1. The ASE’s are measured in units of mean service time squared
per customer.
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Evaluating the alternative HOL predictors

Approximations in the M=M=s model for s = 100 and s = 1� 0.85 0.90 0.93 0.95 0.98 0.99E[W jW > 0] 0.0666 0.0993 0.1435 0.2012 0.500 0.901
conf. int. �0:0018 �0:0027 �0:0018 �0:0019 �0:037 �0:059E[W 2jW > 0] 0.0089 0.0196 0.0414 0.0811 0.500 1.53
conf. int. �0:0006 �0:0012 �0:0016 �0:0026 �0:097 �0:24MSE(�d) 0.00153 0.00219 0.00307 0.00422 0.01020 0.01823

term 1 0.00020 0.00020 0.00020 0.00020 0.00020 0.00015
term 2 0.00073 0.00139 0.00227 0.00342 0.00940 0.01748
term 3 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060MSE(�sr) 0.00173 0.00239 0.00327 0.00442 0.01040 0.01844
term 1 0.00113 0.00179 0.00267 0.00382 0.00980 0.01784
term 2 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060MSE(�ar) 0.00133 0.00199 0.00287 0.00402 0.01000 0.01804
term 1 0.00113 0.00179 0.00267 0.00382 0.00980 0.01784
term 2 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020

Approximations in the M=M=1 model� 0.80 0.85 0.90 0.95 0.96 0.98E[W jW > 0] 5.01 6.68 9.98 20.04 24.80 50.70
conf. int. �0:03 �0:04 �0:08 �0:36 �0:33 �2:4E[W 2jW > 0] 50.3 89.6 200.3 806.6 1211 5290
conf. int. �0:69 �1:36 �5:1 �37:4 �45 640MSE(�d) 12.02 15.36 21.98 42.08 51.58 103.4

term 1 2.01 2.01 2.00 2.02 1.94 2.11
term 2 4.01 7.35 13.98 34.07 43.64 95.25
term 3 6.00 6.00 6.00 6.00 6.00 6.00MSE(�sr) 14.02 17.35 23.97 44.07 53.61 105.31
term 1 8.02 11.35 17.97 38.07 47.61 99.31
term 2 6.00 6.00 6.00 6.00 6.00 6.00MSE(�ar) 10.02 13.35 19.97 40.07 49.61 101.31
term 1 8.02 11.35 19.97 38.07 47.61 99.31
term 2 2.00 2.00 2.00 2.00 2.00 2.00

Table 2.6: Evaluation of the MSE approximations for the predictors �dHOL, �srHOL, and �arHOL in
steady-state using (2.23), (2.21) and (2.22) together with simulation estimates of the first two
moments of the conditional delay E[W1jW1 > 0]. The M=M=s model is considered as a function
of the traffic intensity � for s = 100 and s = 1. The ASE’s are measured in units of mean service
time squared per customer.
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t, the time an arrival at time t would have to wait before beginning service. Since

W (t) = Q(t)+1∑
i=1 (Si=s) ; (2.36)

the law of large numbers implies that W (t)=Q(t)! 1=s as Q(t)!1. Thus, when

Q(t) is large, we have W (t) � Q(t)=s (even if W (t) itself is not large). Assuming

that n is large with w � n=s in (2.25) and (2.6), we have both sw and n large and

c2WHOL;s(w)c2WQ;s(n) � (c2a + 1)=�sw
1=(n + 1) � c2a + 1

� : (2.37)

Since we have introduced HOL partly as an approximation for LES, it is interesting to

consider the difference between the HOL and LES observed delays and the difference

between the random variablesWHOL;s(w) andWLES;s(w; d=s). (We let ta�te = d=s
because it should be proportional to 1=s with s servers.) First note that if at least

one customer remains in queue after the last customer to enter service at time

te, then the HOL customer at time te (after the customer entered service) will

remain the HOL customer at time ta. As a consequence, the HOL customer arrived

immediately after the LES customer. Thus the HOL customer waits more than the

LES customer by the time ta�te but less by the single interarrival time between them.

Clearly these differences should become asymptotically negligible in the appropriate

scaling.

We now compare the random variablesWHOL;s(w) andWLES;s(w; d). We establish a

stochastic bound between these random variables. Let �st denote ordinary stochas-

tic order; see §9.1 of Ross (1996). The following bound shows that the difference

between WHOL;s(w) and WLES;s(w; d) is stochastically bounded and thus asymptot-

ically negligible compared to w and these individual random variables as sw ! 1.
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We say that a family of random variables fX(w) : w > 0g is stochastically bounded if

for any � > 0 there exists a positive constant K(�) such that P (jX(w)j > K(�)) < �.
By Markov’s inequality, for nonnegative random variables it suffices to have the

means E[X(w)] uniformly bounded: P (jX(w)j > K(�)) � E[X(w)]=K(�).

Theorem 2.4.4 (bound on the difference between WHOL;s(w) and WLES;s(w; d=s))
Consider the GI=M=s model. Assume that there is at least one customer in queue

at the new arrival epoch, so that (2.11) is valid for HOL and (2.9) is valid for LES.

Then

WLES;s(w; d=s)�X(s; w; d) �st WHOL;s(w) �st WLES;s(w; d=s) +X(s; w; d) ;
(2.38)

where X(s; w; d) is distributed as

X(s; w; d) � A(w+(d=s))�A(w)+1∑
i=1 (Si=s) : (2.39)

As w !1 for fixed s, E[X(s; w; d)]! (�d+1)=s; as sw !1, E[X(s; w; d)]=w !
0. so that jWHOL(w)�WLES(w; d)jw ! 0 as sw !1 : (2.40)

For the M=M=s model,

X(s; w; d) = A(d=s)+1∑
i=1 (Si=s) ; (2.41)

so that

E[X(s; w; d)] = (�d + 1)=s and V ar(X(s; w; d)) = (2�d + 1)=s2 : (2.42)
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Proof. Without altering the individual distributions ofWHOL;s(w) andWLES;s(w; d=s),
we can make a special construction in which we use exactly the same exponential

random variables Si=s for the two predictors. The random numbers of summands

differ by A(w + (d=s)) � A(w) � 1, which is bounded above by A(w + (d=s)) �
A(w) + 1, which we use in (2.39). Since the renewal process A has rate �s, we

can then apply Blackwell’s renewal theorem, p. 155 of Asmussen (2003), to get

E[A(w + d=s) � A(w)] ! �d as sw ! 1. Recall that we have assumed that

the interarrival time cdf F is non-lattice. Hence we get E[X(s; w; d)]=w ! 0 as

sw !1, which implies (2.40).

2.5 Simulations Related to Theorem 2.4.2

Based on (2.23) in Theorem 2.4.2, we approximate the MSE of the direct HOL,

LES and RCS predictors by

MSE(�dHOL(w)) � (1� �)2w 2 + ((2�� 1)c2a + 4�� 3)w
s + K

s2 ; (2.43)

for K in (2.24). As above, let MSE(�dHOL(W1)) denote the MSE in steady state,

i.e., when we replace w in (2.43) by (W1jW1 > 0). We obtain

MSE(�dHOL(W1)) � (1� �)2E[W 21jW1 > 0]

+ ((2�� 1)c2a + 4�� 3)E[W1jW1 > 0]
s + K

s2 ; (2.44)

where W1 is the steady-state delay.

We have compared the ASE for HOL, LES and RCS toMSE(�dHOL(W1)) and found

close agreement, with the agreement being slightly better for HOL and LES than for
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RCS. In making this comparison, we substitute the simulation estimates of the two

moments E[W1jW1 > 0] and E[W 21jW1 > 0] into (2.44). We must calculate or

approximate these conditional moments in order to have a full approximation, but we

do not consider that step here. We obtain good results comparing approximation

(2.44) to the ASE for the cases of exponential (M), hyperexponential (H2 with

c2a = 4) and Erlang (E2) interrenewal-time distributions. We did experiments for

s = 1; 10; 100; 400; 900, each for four values of �, increasing with s in order to

represent typical cases. The errors were consistently less than 5% for HOL and

LES in these experiments, as illustrated by the results for LES with M and H2
interarrival-time distributions in Table 2.7.

Testing the MSE(HOL1) approximations
in the GI=M=100 model

� M % diff. D % diff. H2 % diff.
0.98 10.20 �0:3% 2.67 �1:9% 62.8 �3:9%
0.95 4.20 1:4% 1.20 �4:1% 22.9 �1:9%
0.93 3.06 0:4% 0.92 �5:8% 15.9 �2:1%
0.90 2.20 �1:5% 0.72 �7:5% 10.5 �3:2%

Table 2.7: Evaluation of the approximations for the steady-state MSE of HOL in (2.44) and (2.46)
by comparing to simulation estimates of the ASE for LES in the GI=M=100 model as a function of
the interarrival-time distribution and the traffic intensity �. The simulation estimates appear in Table
2.1. The approximations in units of 10�3 and the relative percent differences are shown here. The
ASE’s are measured in units of mean service time squared per customer.

We found that the approximation in (2.44) does not perform nearly as well for the

case of a deterministic (D) arrival process, which should not be surprising, because

the deterministic interrenewal-time distribution is a lattice distribution not covered

by Theorem 2.4.2. Instead of (2.43), we propose the following approximation for

the direct predictor with a D arrival process:

MSE(�dHOL;D(w)) � (1� �)2w 2 + �w + (2=s)
s ; (2.45)
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which is obtained by making the simple approximation A(w) � �sw . We then obtain

the following analog of the steady-state approximation (2.44):

MSE(�dHOL;D(W1)) � (1� �)2E[W 21jW1 > 0] + �E[W1jW1 > 0] + (2=s)
s :

(2.46)

Approximation (2.46) performs much better than approximation (2.44) with c2a = 0,
yielding errors of about 5% (ranging up to 11%), instead of about 5�25%, as shown

in Table 2.7. For the refined predictor, we would also change the mean predictor to

(2.16) instead of (2.19).

In order to evaluate the approximations for a specified observed delay w , we consider

data from the simulation where the observed HOL delay falls in a small interval about

w � 2E[W1jW1 > 0]. (We choose interval widths to make roughly reasonable,

comparable sample sizes.) Table 2.8 shows the results of such an experiment for the

GI=M=100 model with � = 0:95. (The width of the sampling interval in each case

was chosen to have roughly comparable sample sizes.) Table 2.8 shows that the

approximations for the HOL conditional mean and variance are remarkably accurate

approximations for all three predictors: HOL, LES and RCS, with the variance

being slightly higher for RCS. We found that the estimated distribution of the actual

delay is approximately normally distributed in each case, as predicted by the limit in

(2.25).

2.6 Heavy-Traffic Limits for Several Predictors

We can gain additional insight about the performance of the different predictors

by considering heavy-traffic limits for the GI=M=s model. To do so, we consider a

family of models indexed by the parameter �, so we introduce a second subscript �
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Testing the approximations (2.19) and (2.21)
with observed w in a small interval about 2E[W1jW1 > 0]

interarrival-time dist. M D H22E[W1jW1 > 0] 0.40 0.20 0.96
selected HOL w interval [0.39, 0.41] [0.19, 0.21] [0.94, 0.98]

sample size 128,287 99,747 151,556
sample mean observed 0.3998 0.2000 0.9597E[WHOL](w) est. 0.4003 0.1996 0.9625V ar(WHOL)(w) est. 0.0080 0.0020 0.0448E[WLES(w)] est. 0.3996 0.1995 0.9617V ar(WLES(w)) est. 0.0081 0.0021 0.0450E[WRCS(w)] est. 0.3938 0.1929 0.9586V ar(WRCS(w)) est. 0.0103 0.0029 0.0507

Predicted mean by (2.19) 0.400 0.205 0.947
Pred. variance by (2.21) 0.0076 0.0021 0.0455

Table 2.8: Comparing the approximations for E[WHOL(w)] and V ar(WHOL(w)) for fixed w following
from (2.19) and (2.21) with simulation estimates of the mean and variance of the HOL, LES and RCS
predictors in the GI=M=100 model with � = 0:95 as a function of the interarrival-time distribution.
Data are collected for observed waiting times contained in a small interval about 2E[W1jW1 > 0].
The resulting sample sizes are shown. The ASE’s are measured in units of mean service time squared
per customer.

in addition to s. We let the service times remain unchanged. We assume that we

start with interarrival times Un having mean 1=s. In system (s; �), we use interarrival

times Un=�, so that they have mean 1=s�. That makes the traffic intensity in model

� be �.
We consider both the classical heavy-traffic (HT) regime in which � " 1 for fixed s
and the Quality-and-Efficiency-Driven (QED) many-server heavy-traffic (HT) regime

in which both � " 1 and s ! 1 with ((1 � �)ps ! � for 0 < � < 1. For more

on the QED regime for GI=G=s queues, see Halfin and Whitt (1981), Puhalskii and

Reiman (2000), Jelenkovic et al. (2004) and Whitt (2004b, 2005). The queue

length tends to be of order 1=(1��) in both limiting regimes, but the delays behave

differently. The delay are of order 1=(1� �) in the classical HT regime, but are of
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order 1� � or 1=ps in the QED HT regime.

2.6.1 Insights from the Heavy-Traffic Snapshot Principle

Just as in the application of heavy-traffic limits to plan queueing simulations reviewed

in §5.8 of Whitt (2002), the time scaling in the heavy-traffic stochastic-process

limits provides important insight. In particular, we can apply the celebrated heavy-

traffic snapshot principle, see Reiman (1982) and p. 187 of Whitt (2002), which

in our context tells us that the waiting times (of other customers) tend to change

negligibly during the time a customer spends waiting when the system is in heavy

traffic. In other words, the snapshot principle immediately implies that the LES and

HOL predictors are asymptotically exact in heavy-traffic limits (specifically, the ratio

converges to one). It also shows that, asymptotically in the heavy-traffic limit, there

is no advantage in averaging over delays of past customers.

Since we are primarily concerned with waiting times, it is appropriate to focus on

the virtual waiting time stochastic process, which describes the waiting time of a

potential arrival who would come at time t. We first consider the classical HT

regime. Let Ws;�(t) be the virtual waiting time at time t in model (s; �). The

waiting time of the k th arrival at time Ak;s;� is just Ws;�(Ak;s;��), where g(t�) is

the left limit of the function g at time t.
The classical heavy-traffic stochastic-process limit for the virtual waiting time pro-

cess states that

(1� �)Ws;�((1� �)�2t)) RBM(t) as � " 1 ; (2.47)

where the limit stochastic process RBM(t) is a reflected Brownian motion, which
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has continuous sample paths, and the convergence in distribution is for the entire

stochastic process with sample paths in the function spaceD; see Whitt (2002). The

space scaling in (2.47) implies that the waiting times will be of order O(1=(1� �)),
while the time scaling in (2.47) implies that the waiting times will only change

significantly over time intervals of length of order O(1=(1��)2). As a consequence,

we conclude that the HOL and LES predictors are relatively consistent in the classical

HT regime.

A similar story holds in the QED HT regime. The stochastic-process limit for the

virtual waiting time process in the QED regime is obtained by Puhalskii and Reiman

(2000). Let Ws;�(t) be the virtual waiting time at time t in model (s; �). Paralleling

(2.47), in the QED regime we have the stochastic-process limit

psWs;�(t)) Y (t) as � " 1 ; (2.48)

where the limit process Y (t) is no longer RBM but again is a diffusion process with

continuous sample paths and again the convergence in distribution is for the entire

stochastic process with sample paths in the function space D.

The time and space scaling in (2.48) is drastically different from (2.47), but we

nevertheless obtain the same conclusions about our predictors. Now the waiting

times are getting small instead of large, being of order O(1=ps), but there is no

time scaling at all, so that the waiting times will only change significantly over time

intervals of length of order O(1). As a consequence, we conclude that the HOL

and LES predictors are also relatively consistent in the QED HT regime. Again, we

conclude that there will be no advantage to averaging the delays experienced over

past customers.
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2.6.2 Steady-State Heavy-Traffic Limits

In the following, we establish heavy-traffic limits in both regimes for steady-state

random variables. We focus on the HOL predictor; by Theorem 2.4.4, the LES

predictor behaves the same. We see what happens “on average” to the random

variableWHOL;s;�(w) (where the observed delay w has the steady-state distribution).

From the steady-state HT limits, we deduce that both the direct QL and HOL

predictors are (weakly) relatively consistent: the ratio of the predictor to the random

quantity being estimated converges to 1. We also establish limits establishing the

asymptotic efficiency of the different predictors (comparing MSE’s). In these HT

limits the direct and refined predictors have asymptotically the same efficiency, while

the QL predictor is asymptotically more efficient than these delay-history predictors

by the constant factor c2a + 1, consistent with Theorem 2.4.2. Since associated

heavy-traffic stochastic-process limits have been established for other models, the

predictors should have similar nice properties for other models.

The Classical Heavy-Traffic Regime. We start with the classic heavy-traffic (HT)

regime in which � " 1 with fixed s. We look at the distribution of WHOL;s(w),
assuming that the observed waiting time w experienced by the customer at the

head of the line is a random variable W h1;s;�, assumed to be the steady-state delay

in model (s; �) experienced by a customer at the head of the line at an arrival

epoch, conditional on there being at least one customer in the queue. Thus let

WHOL;s;�(W h1;s;�) denote a random variable with the distribution

P (WHOL;s;�(W h1;s;�) � x) �
∫ 1
0 P (WHOL;s;�(w) � x) dP (W h1;s;� � w) ; (2.49)

in model (s; �), where in this subsection s is held fixed.

This means that E[WHOL;s;�(W h1;s;�)] � E[E[WHOL;s;�(W h1;s;�)jW h1;s;�]]. The ran-
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dom variable W h1;s;� is not quite distributed as the steady-state waiting time at the

arrival epoch, W1;s;�, or the conditional steady-state waiting time, (W1;s;�jW1;s;� >
0), but it is asymptotically equivalent to both of these in the heavy-traffic limit.

In order to relate the HOL and QL predictors, it is important to exploit the joint

convergence of the steady-state queue length and waiting time. Such joint con-

vergence is discussed extensively for the single-server queue in Chapter 9 of Whitt

(2002); it was also used in Iglehart and Whitt (1970), which treated more general

models. Let (Q1;s;�;W1;s;�) be a random vector with the limiting steady-state dis-

tribution of (Qk;s;�;Wk;s;�), where Qk;s;� is the queue length and Wk;s;� is the delay

just before Ak;s;�, where Ak;s;� is the k th arrival epoch, all in model (s; �).
Here we will use the following established steady-state heavy-traffic limit:

(1� �)(Q1;s;�;W1;s;�)) (L; L=s) as � " 1 ; (2.50)

where L d= Exp(c2a + 1)=2 with Exp(m) denoting a random variable having an

exponential distribution with mean m. We give a detailed proof in a subsection

below starting from the known steady-state distribution for Q1;s;�. The joint con-

vergence follows from the limit for Q1;s;� and the law of large numbers, using the

representation

(Q1;s;�;W1;s;�) =
(
Q1;s;�; (Q1;s;� + 1)

([Q1;s;�+1∑
i=1 (Si=s)

]
=(Q1;s;� + 1)

))
:

(2.51)

We can apply (2.50) and previous results to get the following limits for our predictors.

Let RMSE� MSE=Mean2 be the relative mean squared error. Let c2WQ;s;�(Q1;s;�) be

the random variable assuming the value c2WQ;s;�(n) with probability P (Q1;s;� = n) for

n � 0. Let other random variables involving c2 and RMSE be defined analogously.
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We prove the following theorem in a subsection below.

Theorem 2.6.1 (classical heavy-traffic limit) If � " 1 in the family of GI=M=s mod-

els indexed by (s; �) with fixed s, then

WQ;s;�(Q1;s;�)E[WQ;s;�(Q1;s;�)jQ1;s;�] =
WQ;s;�(Q1;s;�)(Q1;s;� + 1)=s ) 1 ; (2.52)

W1;s;�W h1;s;� ) 1 and
WHOL;s;�(W h1;s;�)W h1;s;� ) 1 ; (2.53)

from which we can deduce that

(1� �)(Q1;s;�;W1;s;�;W h1;s;�;WQ;s;�(Q1;s;�);WHOL;s;�(W h1;s;�))

) (L; L=s; L=s; L=s; L=s) (2.54)

and

(1� �)�1(c2WQ;s;�(Q1;s;�); c2WHOL;s;�(W h1;s;�); RMSE(W h1;s;�))
) (1=L; (c2a + 1)=L; (c2a + 1)=L) (2.55)

where L d= Exp((c2a + 1)=2) as above, so that

WHOL;s;�(W h1;s;�)WQ;s;�(Q1;s;�) ) 1; c2WHOL;s;�(W h1;s;�)c2WQ;s;�(Q1;s;�) ) c2a + 1 ; (2.56)

RMSE(W h1;s;�)c2WHOL;s;�(W h1;s;�) ) 1 and
RMSE(W h1;s;�)c2WQ;s;�(Q1;s;�) ) c2a + 1 : (2.57)

The limits in (2.52) and (2.53) show that the direct QL and HOL predictors are

(weakly) relatively consistent in the classical heavy-traffic limit, while the limits

in (2.55)–(2.57) compare the asymptotic efficiency of the different predictors. In

this heavy traffic limit, the direct and refined HOL predictors have asymptotically
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the same efficiency, while the QL predictor is asymptotically more efficient by the

constant factor c2a + 1.
We conjecture (but have not yet proved) that there is appropriate uniform integrabil-

ity, so that the moments of these random variables converge as well as distributions,

see p. 31 of Billingsley (1999). Then from (2.55) and (2.56) we obtain associated

convergence of the moments:

E
[c2WHOL;s;�(W h1;s;�)c2WQ;s;�(Q1;s;�)

]
! c2a + 1 and

E[c2WHOL;s;�(W h1;s;�)]E[c2WQ;s;�(Q1;s;�)] ! c2a + 1 ; (2.58)

and similarly for the direct predictor. These limits supplement the previous limits,

implying that the QL delay predictor is asymptotically more efficient than the HOL

and LES delay predictors by the constant factor c2a +1 in the classical heavy-traffic

limit.

The QED Many-Server Heavy-Traffic Regime.

We now consider the QED HT regime, in which both � " 1 and s " 1 with

(1� �)ps ! � for some positive constant �.

This alternative QED regime is appealing because, unlike the classical HT regime,

the probability that a customer is delayed approaches a nondegenerate limit, strictly

between 0 and 1:

P (W1;s;� > 0)! � and P (Q1;s;� > 0)! �; 0 < � < 1 ; (2.59)

where � � �(�=√c2a + 1) for �(x) � [1 + x�(x)=�(x)]�1, where � is the cdf and

� is the probability density function (pdf) of the standard normal N(0; 1); see (1.1)

of Whitt (2004b).

With minor modifications, the story is the same as for the classical HT regime, so
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we will be brief. A major difference is that the queue length is of order O(ps) =
O(1=(1� �)), while the waiting time is of order O(1=ps) = O((1� �)). As before,

the ratio W1;s;�=Q1;s;� is of order O(1=s), but now s !1.

Paralleling (2.50), we have the joint limit

(Q1;s;�ps ; (1� �)Q1;s;�;psW1;s;�; W1;s;�1� �
)
) (Z; �Z;Z;Z=�) ; (2.60)

where P (Z > 0) = � for the same � � �(�=√c2a + 1) defined above and (ZjZ >
0) d= L d= Exp((c2a + 1)=2). The limit for Q1;s;� was established by Halfin and

Whitt (1981), but Whitt (2004b) corrects an error in the expression for � when the

arrival process is non-Poisson. The joint limit with W1;s;� can be established as in

(2.51). Paralleling (2.87), here we have

(
(1� �)(Q1;s;�jQ1;s;� > 0); W1;s;�jW1;s;� > 0

1� � ; W h1;s;�1� � ; (1� �)A(W h1;s;�)
)

) (�L; L=�; L=�; �L) ; (2.61)

where again L d= (ZjZ > 0) d= Exp(c2a + 1)=2; as before, the important point is

that the same random variable L appears in all four components on the right.

We now state the theorem, omitting the proof.

Theorem 2.6.2 (QED heavy-traffic limit) If � " 1 and s " 1 so that (1��)ps ! �
for 0 < � <1 in the family of GI=M=s models indexed by � and s, then

WQ;s;�(Q1;s;�)(Q1;s;� + 1)=s ) 1 and
WHOL;s;�(W h1;s;�)W h1;s;� ) 1 : (2.62)

(1� �)�1(WQ;s;�(Q1;s;�);WHOL;s;�(W h1;s;�))) (L=�; L=�) (2.63)
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and

(1� �)�1(c2WQ;s;�(Q1;s;�); c2WHOL;s;�(W h1;s;�); RMSE(W h1;�;s))
) (1=�L; (c2a + 1)=�L; (c2a + 1)=�L) (2.64)

where L d= Exp((c2a + 1)=2) as above, so that

WHOL;s;�(W h1;s;�)WQ;s;�(Q1;s;�) ) 1; c2WHOL;s;�(W h1;s;�)c2WQ;s;�(Q1;s;�) ) c2a + 1 : (2.65)

RMSE(W h1;s;�)c2WHOL;s;�(W h1;s;�) ) 1 and
RMSE(W h1;s;�)c2WQ;s;�(Q1;s;�) ) c2a + 1 : (2.66)

Just as in the classical HT regime, we conjecture that there is appropriate uniform

integrability, so that the moments converge as well as distributions. Then we will

obtain associated convergence of the moments, just as in (2.58).

Heavy-Traffic Detail: Proof of (2.50).

In this section we prove the classical heavy-traffic limit for the steady-state joint

distribution of the queue length and waiting time at arrival epochs stated in (2.50):

(1� �)(Q1;�;W1;�)) (L; L=s) as � " 1 ; (2.67)

where L d= Exp(c2a + 1)=2 with Exp(m) denoting a random variable that is expo-

nentially distributed with mean m. We consider this a known result, but we cannot

point to a place where a proof is given.

We draw on well-known properties of the steady-state distribution of the GI=M=s
queue. The key initial result is the fact that the conditional distribution of the

queue length at an arrival epoch, given that the arrival must wait, is a geometric
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distribution, i.e.,

P (Q1;� = j jW1;� > 0) = (1� !)!j ; j � 0 ; (2.68)

where the single parameter ! in (2.68) is the unique root of the equation

! =
∫ 1
0 e�(1�!)sx dF (x) � f̂ ((1� !)s) ; (2.69)

where f̂ is the Laplace-Stieltjes transform of the cdf F , i.e.,

f̂ (z) �
∫ 1
0 e�zx dF (x) ; (2.70)

see (14.10), (14.11), (14.12) and (14.19) of Cooper (1982). This property was

used in the proof of Theorem 2.4.3.

The key then is the way that the root ! � !(�) depends on the traffic intensity

� as � " 1. Anticipating that we should have !(�) " 1 as � " 1, we see that

the argument of the Laplace-Stieltjes transform should approach 0 in the limit. It

should thus come as no surprise that we can rigorously establish the desired result

by expanding the Laplace transform f̂ (z) in a Taylor series about z = 0; see p. 435

of Feller (1971) for supporting theory. As was first observed by Smith (1953, p.

461), it follows that

1� !(�)
1� � ! 2

c2a + 1 as � " 1 : (2.71)

The expansion appears in a more general context in formula (17) of Abate and Whitt

(1994). In the special case of the GI=M=s queue, equation (7) there reduces to

equation (2.69) here. An alternative approach involving upper and lower bounds is

given in Whitt (1984); that focuses on the more elementary GI=M=1 model, but the
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key root has the same structure. The equation differs only by the constant factor s
appearing in the equation (2.69). Additional theoretical results about characterizing

roots for queues appears in Neuts (1986), Choudhury and Whitt (1994) and Glynn

and Whitt (1994).

It is well known – see pages 1-2 of Feller (1971) – that if Xm is a random variable

with a geometric distribution having mean m, then

Xmcm ) Exp(1=c) as m !1 : (2.72)

By (2.68), (Q1;�jW1;� > 0) has a geometric distribution with mean 1=(1� !(�)).
Thus we can combine (2.68), (2.71) and (2.72) to obtain

(1� �)(Q1;�jW1;� > 0)) Exp((c2a + 1)=2) as � " 1 : (2.73)

It is also known that

P (W1;� > 0) = A
1� ! where A =

[ 1
1� ! +X

]�1 ; (2.74)

with X � X(�) ! X(1), 0 < X(1) < 1, as � " 1; see (14.14)–(14.17) of Cooper

(1982). Hence

P (W1;� > 0) = [1 + (1� !(�))X(�)]�1 ! 1 as � " 1 : (2.75)

Combining (2.73) and (2.75), we obtain the first part of (2.67):

(1� �)Q1;� ) L d= Exp((c2a + 1)=2) as � " 1 : (2.76)
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Given that

W1;� d=
Q1;�+1∑
i=1 (Si=s) ; (2.77)

we have W1;�Q1;� + 1 )
1
s as � " 1 (2.78)

by the weak law of large numbers, since Q1;� ) 1 as a consequence of (2.76).

We then apply Theorem 11.4.5 of Whitt (2002) to write the joint limit

((1� �)Q1;�;W1;�=(Q1;� + 1))) (L; (1=s)) : (2.79)

We then can apply the continuous mapping theorem with the function h : R2 ! R2
defined by h(x; y) = (x; xy) to get

h(((1� �)Q1;�;W1;�=(Q1;� + 1))) h(L; (1=s)) = (L; L=s) ; (2.80)

but

h(((1� �)Q1;�;W1;�=(Q1;� + 1)) =
(
(1� �)Q1;�; (1� �)W1;� Q1;�Q1;� + 1

)
:

(2.81)

Since Q1;� )1, Q1;�Q1;� + 1 ) 1 as � " 1 : (2.82)

Hence,

jh(((1��)Q1;�;W1;�=(Q1;�+1))�(1��)(Q1;�;W1;�)j ) 0 as � " 1 : (2.83)

Thus we can combine (2.80), (2.83) and the convergence-together theorem, The-

orem 11.4.7 of Whitt (2002), to complete the proof of (2.67).
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Proof of Theorem 2.6.1.

First we show that W h1;s;� )1 as � " 1. As a consequence of the limit in (2.50),

we must have W1;s;� ) 1 as � " 1. Suppose that we do not have W h1;s;� ) 1.

Then there must exist a subsequence f�kg with �k " 1 as k ! 1, a constant K
and a positive constant � > 0 such that P (W h1;s;�k > K) > � for all k . Since

W1;s;� d=
A(W h1;s;�)+2∑

i=1 (Si=s) ; (2.84)

conditional on W1;s;� > 0, which holds with probability 1 in the limit, there must

exist a new constant K 0 such that P (W1;s;�k > K 0) > �=2 for all k as well, but

that contradicts the established limit W1;s;� ) 1 as � " 1. Hence we must have

W h1;s;� )1 as � " 1, as claimed above.

Given that � " 1 and W h1;s;� )1, we get A(W h1;s;�)=W h1;s;� ) s and

WHOL;s;�(W h1;s;�)W h1;s;� =
(∑A(W h1;s;�)+2i=1 (Si=s)A(W h1;s;�) + 2

)(A(W h1;s;�) + 2
W h1;s;�

)
) (1=s)� s = 1 ;

(2.85)

by the law of large numbers for partial sums and renewal processes. Similarly, by

(2.50), we also have Q1;s;� )1, so that

WQ;s;�(Q1;s;�)Q1;s;� + 1 =
∑Q1;s;�+1i=1 (Si=s)Q1;s;� + 1 ) 1=s : (2.86)

The limits (2.85) and (2.86) imply (2.52) and (2.53).

Since the limits in (2.85) and (2.86) are deterministic, we can apply Theorem 11.4.5
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of Whitt (2002) to obtain joint convergence of all these with the limits in (2.50):

(
(1� �)Q1;s;�; (1� �)W1;s;�; (1� �)W h1;s;�; WQ;s;�(Q1;s;�)Q1;s;� + 1 ; WHOL;s;�(W h1;s;�)W h1;s;�

)
)
(
L; Ls ;

L
s ;

1
s ; 1

)
: (2.87)

We next apply the continuous mapping theorem, see Section 3.4 of Whitt (2002),

with the function h : R5 ! R5 defined by h(v ; w; x; y ; z) = (v ; w; x; vy ; xz) to get

(2.54) from (2.87).

To continue, we next consider the random variable c2WHOL;s;�(W h1;s;�). Starting from the

limit in (2.54), we can apply the Skorohod representation theorem, Theorem 3.2.2

on p. 78 of Whitt (2002), to get random variables ~W h1;s;� with the same probability

law as W h1;s;� but for which we have the convergence (1� �) ~W h1;s;� ! ~L=s as � " 1
w.p.1, where ~L d= L d= Exp((c2a +1)=2). Next note that c2WHOL;s;�(w)=c2WHOL;s;1(w) ! 1
w.p.1 as � " 1 and w !1 in any order. Then, by (2.25),

c2WHOL;s;�( ~W h1;s;�)1� � =
(c2WHOL;s;�( ~W h1;s;�)c2WHOL;s;1( ~W h1;s;�)

) ~W h1;s;�c2WHOL;s;1( ~W h1;s;�)(1� �) ~W h1;s;�
! (c2a + 1)=s~L=s

(2.88)

as � " 1 w.p.1. Essentially the same reasoning applies to the random variable

RMSE (W h1;s;�), giving the same limit. The equality in distribution then implies the

associated convergence in distribution for the last two components of the original

random vector in (2.55). We now treat the first component. Since (Q1;s;� +
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1)c2WQ;s;�(Q1;s;�) = 1, a deterministic quantity, by (2.5), we can apply (2.25) to get

c2WHOL;s;�(W h1;s;�)c2WQ;s;�(Q1;s;�) =
(Q1;s;� + 1

W h1;s;�
)( W h1;s;�c2WHOL;s;�(W h1;s;�)(Q1;s;� + 1)c2WQ;s;�(Q1;s;�)

)

=
(Q1;s;� + 1

W h1;s;�
)
W h1;s;�c2WHOL;s;�(W h1;s;�)

) s � c2a + 1
s = c2a + 1 : (2.89)

We then reason as before in establishing (2.87), first to express this limit jointly

with the last two components of (2.55) and then to apply the continuous mapping

theorem to complete the proof of (2.55) itself. Finally, (2.56) and (2.57) follow

from the previous results.

2.6.3 Customers Who Have Completed Service

In this final subsection, supplementing the application of the snapshot principle

above, we consider the predictors based on the delays experienced by previous cus-

tomers to complete service. Unlike for the LES and HOL predictors, we find that

the LCS predictor behaves very differently in the classical and QED HT regimes.

The way to see this is to observe that the LCS customer completed service a full

service time in the past. That LCS customer arrived a waiting time plus a service

time in the past.

In both heavy-traffic regimes, the service time is an exponential random variable

with mean 1. In the classical HT regime, the waiting times are exploding in heavy

traffic, so that a service time is negligible compared to the waiting time. Thus we

see that LCS will be asymptotically equivalent to LES and HOL in the classical HT

regime, for any fixed number of servers. The LCS predictor will be consistent as
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well in the classical heavy-traffic regime.

However, the story is very different in the QED HT regime. The service times remain

unchanged, but now the waiting times become smaller, being of order O(1=ps).
Now the service time is the same order as the time scaling. The stochastic-process

limit in (2.48) describes the waiting time experience of each customer, but for the

last customer to complete service at time t, we have a different limit. Let ALs;�(t)
denote the arrival time of the last customer to complete service at time t in model

(s; �). The relevant limit now will be

psWs;�(ALs;�(t))) Y (t � S) as � " 1 ; (2.90)

where Y (t) is the limit process in (2.48) and S is a service time, an exponential

random variable with mean 1. In other words, the waiting time at time t is approx-

imately Y (t)=ps, while the waiting time of the last customer to complete service

immediately prior to time t is approximately Y (t � S)=ps. Thus, in the QED HT

limit the LCS predictor is not consistent. The effectiveness of the LCS predictor

depends on the difference between Y (t�S) and Y (t). However, we do not attempt

to do further analysis; here we are content to observe that the LCS predictor has

inferior asymptotic performance in the QED HT regime. That is consistent with

our simulation results, which show that the LCS predictor performs poorly for large

s.
Fortunately, there is better information that we can obtain from customers who

have already completed service in the QED HT regime. Other customers who

have completed service are very likely to have arrived much more recently than the

last customer to complete service. The minimum service time among the last m
customers to complete service is 1=m. Since the waiting times are of order 1=ps,
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it is natural to consider m = O(ps); then the minimum service time among these

customers also will be of order O(1=ps).
As a bound, first consider the customer among the last cps customers to complete

service with the minimum service time. That customer’s service time is exponentially

distributed with mean 1=cps = O(1=ps). By (2.48), the customer’s waiting time is

also of order O(1=ps). Since the times between successive service completions are

i.i.d. exponential random variables with mean 1=s, the last cps service completions

occur over a time interval having mean c=ps = O(1=ps). Hence this customer

arrived O(1=ps) in the past. Hence we deduce that if we consider the customer

among the last cps customers to complete service with the minimum service time,

then that delay predictor is consistent in the QED HT regime.

Even better will be the RCS and RCS-cps predictors, because those customers nec-

essarily arrive at least as recently. We summarize these conclusions in the following

theorem. To state the theorem, let WRCS1;s;� and WRCS�cps1;s;� be the steady-state RCS

and RCS-cps delays in model (s; �); and let WRCS;s;�(w) and WRCS�cps;s;�(w) be

the associated random variables having the conditional distribution of the delay to

be estimated given the observed RCS and RCS-cps delays.

Theorem 2.6.3 (performance of LCS, RCS and RCS-cps in the QED HT regime)
If � " 1 and s " 1 so that (1� �)ps ! � for 0 < � <1 in the family of GI=M=s
models indexed by s and �, then the RCS and RCS-cps predictors are relatively

consistent, i.e.,

WRCS;s;�(WRCS1;s;�)WRCS1;s;� ) 1 and
WRCS�cps;s;�(WRCS�cps1;s;� )

WRCS�cps1;s;� ) 1 ; (2.91)

but the LCS predictor is not relatively consistent.
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In this relatively crude sense, the predictors LES, HOL, RCS and RCS-cps are all

asymptotically equivalent in the QED regime, but LCS is not. However, it remains

to describe the asymptotic efficiency of RCS and RCS-cps, paralleling the results

for the HOL (and LES) predictor SCV’s in (2.64) and (2.65).

2.7 Concluding Remarks

Insights that can be Generalized. Even though we are primarily interested in

service systems that are more complex than the GI=M=s queueing model, in this

chapter we studied the performance of alternative delay predictors in this relatively

simple idealized GI=M=s setting. Our goal has been to gain insight into how the

predictors will perform in more complex settings. Our results for the GI=M=s model

indicate what to expect more generally.

Performance of the Predictors. An important reference point for the delay pre-

dictors based on delay history is the standard QL predictor based on the observed

queue length, defined in (2.2). For QL, the only source of uncertainty is the re-

maining service times of the customers ahead of the arrival. That uncertainty can

be reduced if the remaining service times can be reliably estimated, as emphasized

by Whitt (1999a).

As can be seen from formulas (2.9)-(2.11), to a large extent, the LES and HOL

predictors can be regarded as the QL predictor modified by replacing the known

queue length by an estimate of that queue length. Since the queue length is equal

(or approximately equal) to the number of arrivals during the observed waiting time,

the queue length is estimated by the expected number of arrivals during the observed

waiting time. Thus the increase in MSE in going from QL to the LES, HOL and
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RCS predictors is primarily due to variability in the arrival process. The MSE tends

to be larger for LES and HOL than QL by the constant factor (c2a + 1), where c2a
is the SCV of an interarrival time, a common measure of variability for a renewal

arrival process; see Whitt (1982a).

As a consequence, the delay predictors based on delay history will perform about the

same as the QL predictor when the arrival process has very low variability, but the

relative performance will degrade as that arrival-process variability increases. From

the perspective of statistical precision, the QL predictor should be preferred to the

delay-history predictors if it is available, unless there is negligible arrival-process

variability. The delay-history predictors offer the advantage of transparency, but

that is obtained at the expense of statistical precision. We will see in the following

chapters that this insight applies very broadly.

Overall, we conclude that the greatest source of prediction uncertainty is the re-

maining service times. After that, it is the arrival-process variability, as partially

characterized by the SCV c2a . We conclude that the predictors �QL(n), �dLES(w),
�dHOL(w) and �dRCS(w) can be very useful, but they are not extraordinarily accurate.

The refined predictors for HOL, LES and RCS can remove all or nearly all of the bias,

but non-negligible variance remains. The greatest hope for more reliable prediction

seems to lie in being able to better predict the remaining service times, which is

certainly possible if the service times are actively controlled, and is possible to some

extent if either the service-time distribution is non-exponential or if it is possible to

classify the customers, as discussed in Whitt (1999a).

We considered several different delay predictors based on recent delay history, no-

tably LES, HOL and RCS. Through analysis and extensive simulation experiments,

we conclude that the LES and HOL delay predictors are very similar, with both being

more accurate than the others based on delay history, but less accurate than the



Chapter 2. Delay Prediction in the GI=M=s Model 81

full-information queue-length (QL) predictor. For large s, RCS is far superior to the

delay of the last customer to complete service (LCS), because customers need not

complete service in the same order they arrive. For low traffic intensities with large

s, LCS was even outperformed by the no-information predictor (NI). The reason

is that the LCS customer may have arrived too long ago. We conclude that RCS

should only be preferred to HOL and LES if delay information is not available until

after customers complete service, but the MSE is not much greater for RCS than

for LES and HOL.

In §2.6 we established heavy-traffic limits that provide important insight. The heavy-

traffic snapshot principle provides strong support for all these delay-history estima-

tion procedures, and shows that there should be little benefit from averaging over

past customer delays, under heavy loads. The relative errors of the LES and HOL

predictors are asymptotically negligible in both the classical and many-server heavy-

traffic regimes. The MSE relative to the mean is asymptotically negligible for all the

candidate delay predictors based on delay history The QL predictor is asymptotically

more efficient than HOL and LES by the constant factor c2a +1 in both heavy-traffic

regimes. Since similar heavy-traffic limits have already been established for much

more general models, these heavy-traffic properties can be expected to hold more

generally.



3
Delay Prediction in the GI=GI=s + GI

Model

3.1 Introduction

In this chapter, we use heavy-traffic limits and computer simulation to study the per-

formance of alternative real-time delay predictors in the overloaded GI=GI=s + GI
multiserver queueing model, allowing customer abandonment. Our main contri-

butions are: (i) to propose new, effective, and simple ways to do better delay

prediction in overloaded many-server queues with customer abandonment, (ii) to

establish heavy-traffic limits that generate approximations for the expected mean

squared error (MSE) of some delay predictors, and (iii) to describe results of simu-

lation experiments evaluating alternative delay predictors. We obtain more effective

delay predictors by exploiting approximations for performance measures in many-

server queues with a non-exponential abandonment-time distribution, from Whitt

(2005b, 2006). This chapter is an edited version of Ibrahim and Whitt (2009b).

82
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For completeness, we redefine relevant notation and restate some related results

from chapter 2.

3.1.1 The GI=GI=s + GI Model

In this chapter, we consider the steady-state behavior of an overloaded GI=GI=s+GI
queueing model. This model has independent and identically distributed (i.i.d.)

interarrival times with mean ��1 and a general distribution. We only use the i.i.d.

assumption for the interarrival times when simulating the model; it is not required

for the implementation of our delay predictors. Service times are i.i.d. with mean

��1 and a general distribution. Each arriving customer will abandon if he is unable

to start service before a random time with mean ��1 and a general distribution.

Abandonments times are i.i.d.; the arrival, service and abandonment processes are

all mutually independent. There is unlimited waiting space and arriving customers

are served in order of arrival; i.e., we use the first-come-first-served (FCFS) service

discipline. The traffic intensity is � � �=s�.

We focus on overloaded scenarios, in which the arrival rate exceeds the maximum

possible total service rate. Customer abandonment makes the system stable in this

case. (That can be proved by bounding the model above by the GI=GI=1 model

obtained by removing all servers; then the abandonment times can be thought of as

service times. For more on the stability of the GI=GI=1 model, see p.178 of Whitt

(1982b).) We consider overloaded systems because we are primarily interested in

predicting delays when they are large. For example, many call centers are overloaded

at least some of the time, especially service-oriented ones in which emphasis is placed

on efficiency rather than on quality of service.
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3.1.2 Potential Waiting Times

As in Baccelli et al. (1984) and Garnett et al. (2002), we need to distinguish

between the actual and potential waiting times of a given delayed customer in a

queueing model with customer abandonment. A customer’s actual waiting time is

the amount of time that this customer spends in queue, until he either abandons

or joins service, whichever comes first. A customer’s potential waiting time is the

delay he would experience, if he had infinite patience (quantified by his abandon

time). For example, the potential waiting time of a delayed customer who finds n
other customers waiting ahead in queue upon arrival, is the amount of time needed

to have n + 1 consecutive departures from the system (either service completions

or abandonments from the queue). In this chapter, we study ways of predicting the

potential waiting times of delayed customers.

3.1.3 Quantifying Performance: Average Squared Error (ASE)

As in chapter 2, we rely on simulation to evaluate the alternative delay predictors.

In our simulation experiments, we quantify the performance of a delay predictor by

computing the average squared error (ASE), defined by:

ASE � 1
k

k∑
i=1 (wi � pi)2 ; (3.1)

where wi > 0 is the potential waiting time of delayed customer i , pi is the delay

prediction corresponding to customer i , and k is the number of customers in our

sample. (Here, we define the ASE slightly differently than in the GI=M=s model

where there is no distinction between actual and potential waiting times; see (3.1).)

In our simulation experiments, we measure wi for both served and abandoning cus-
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tomers. For abandoning customers, we compute the delay experienced, had the

customer not abandoned, by keeping him “virtually” in queue until he would have

begun service. Such a customer does not affect the waiting time of any other

customer. The ASE should approximate the expected MSE in steady state.

3.1.4 Mean Squared Error (MSE)

Paralleling (2.5), let WQ(n) represent a random variable with the conditional distri-

bution of the potential delay of an arriving customer, given that this customer must

wait before starting service, and given that the queue length at the time of his ar-

rival, t, not counting himself, is Q(t) = n. In this framework, the event “Q(t) = 0”
corresponds to all servers being busy and our arriving customer being the first in

queue. Let �QL(n) be some given single-number delay prediction which is based on

the queue length, n. Then, the MSE of the corresponding delay predictor is given

by:

MSE � MSE(�QL(n)) � E[(WQ(n)� �QL(n))2] :
The MSE of a queue-length-based delay predictor is a function of n, the number

of customers seen in queue upon arrival. By looking at the ASE, we are looking

at the expected MSE averaging over all n, where the arrival must wait, in steady

state. As explained in chapter 2, it is known that the conditional mean, E[WQ(n)],
minimizes the MSE. In the GI=M=s model, we can easily calculate E[WQ(n)]; see

(2.6). In contrast, it is difficult to find a closed-form expression for this mean in the

GI=GI=s + GI model, so we develop approximations of it.
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3.1.5 Root Relative Squared Error

In addition to the ASE, we quantify the performance of a delay predictor by com-

puting the root relative average squared error (RRASE), defined by:

RRASE �
pASE

(1=k)∑ki=1 pi ; (3.2)

using the same notation as in (3.1). The denominator in (3.2) is the average

potential waiting time of customers who must wait. For large samples, the RRASE

should agree with the expected root relative mean squared error (RRMSE), in steady

state. The RRASE and RRMSE are useful because they measure the effectiveness

of an predictor relative to the mean, so that they are easy to interpret.

3.1.6 Organization

The rest of this chapter is organized as follows: In §3.2, we describe a no-information

delay predictor (NI) in the efficiency-driven many-server heavy-traffic limiting regime,

which serves as a useful reference point. In §3.3, we define new queue-length-based

delay predictors, and discuss relevant results. For completeness, we briefly describe

alternative delay-history-based delay predictors in §3.4. (For a more complete de-

scription, see chapters 1 and 2.) We establish heavy-traffic limits for several delay

predictors in the G=M=s +M model in §3.5, and present simulation results for the

M=M=s + GI model in §3.6. In §3.7, we present additional experimental results

for non-exponential service-time distributions. In §3.8, we present simulation re-

sults substantiating the heavy-traffic limits of §3.5 by considering the GI=M=s +M
model with alternative interarrival-time distributions and alternative values of the

abandonment rate �. We make concluding remarks in §3.10.
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3.2 A Theoretical Reference Point

An important theoretical reference is the many-server heavy-traffic limit for the num-

ber in the system in the Markovian M=M=s+M queue with customer abandonment,

in the efficiency-driven (ED) regime, as discussed in Garnett et al. (2002), Whitt

(2004a) and Talreja and Whitt (2008). That limit describes how the model behaves

as the arrival rate � and number of servers s increase, while the individual service

rate � and individual abandonment rate � remain unchanged, with the traffic inten-

sity held fixed at a value � � �=s� > 1. (There are also some results for the more

general G=GI=s + GI model in the ED regime in Zeltyn and Mandelbaum (2005)

and Whitt (2006).)

Let Ws(1) represent the steady-state waiting time as a function of s in the ED

regime, and let ) denote convergence in distribution. Whitt (2004a) shows that

Ws(1)) w � 1
� ln (�) > 0 as s !1 ; (3.3)

while Theorem 6.1 of Zeltyn and Mandelbaum (2005) (Theorem 5 below) and

Theorem 6.4 of Talreja and Whitt (2008) show that

ps (Ws(1)� w)) N(0; 1=��) as s !1; (3.4)

where N(m;�2) denotes a normal random variable with mean m and variance �2.
These limits lead to the deterministic fluid approximation Ws(1) � w and the

stochastic refinement Ws(1) � N(w; 1=s��).
The deterministic fluid approximation w in (3.3) and the steady-state mean E[Ws(1)]
it approximates, are candidate no-information (NI) predictors, �NI, paralleling the

NI predictor for the GI=M=s model considered as a reference point in chapter 2
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(e.g., see §2.2.1). In fact, the NI predictor is much more appealing now, because

it is much more effective with customer abandonment than without. Based on the

limits above (plus appropriate uniform integrability, which can also be established),

we have

MSE(�NI) � V ar(Ws(1)) � 1
s�� ! 0 as s !1: (3.5)

Unlike in the GI=M=s model, here the squared coefficient of variation (SCV, variance

divided by the square of the mean), c2NI, is asymptotically negligible as well, because

here E[Ws(1)]! w > 0 as s !1. For the GI=M=s model, c2NI ! 1 as � " 1 for

all s. The limit in (3.5) implies that any reasonable predictor ought to be effective

in the ED regime as s gets larger. We will want to see that our proposed predictors

outperform NI as well as become effective as s increases.

3.3 Queue-Length-Based Delay predictors

In this section, we describe alternative predictors based on the queue length seen

upon arrival to the system. The information needed for the implementation of

each of these queue-length-based predictors is summarized in Table 3.1. For com-

pleteness, we begin by reviewing the QL predictor which was extensively studied in

chapter 2.

3.3.1 The Simple Queue-Length-Based (QL) Delay Predictor

For a system having s agents, each of whom on average completes one service

request in ��1 time units, we may predict that a customer, who finds n customers

in queue upon arrival, will be able to begin service in (n + 1)=s� minutes. Let QL

refer to this simple queue-length-based predictor, commonly used in practice. Let
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Information About the Model
QL Q(t), s, �
QLmr Q(t), s, �, �
QLr Q(t), s, �, F (x), �
QLm Q(t), s, �, �
QLa Q(t), s, �, F (x), �

Table 3.1: Summary of the information required for the implementation of each queue-length delay
predictor.

the predictor, as a function of n, be:

�QL(n) � (n + 1)=s� : (3.6)

The QL predictor is appealing due to its simplicity and ease of implementation: It

uses information about the system that usually is readily available. In the GI=M=s
model, WQ(n) is the time necessary to have exactly n + 1 consecutive departures

from service (service completions). But, the times between successive service com-

pletions, when all servers are busy, are i.i.d. random variables distributed as the

minimum of s exponential random variables, each with mean ��1, which makes

them i.i.d. exponential with mean 1=s�; see (2.5). The optimal delay predictor, us-

ing the MSE criterion, is the one announcing the conditional mean, E[WQ(n)]. But,

following the analysis above, E[WQ(n)] = �QL(n) in (3.6). Hence, QL is optimal for

the GI=M=s model, under the MSE criterion. Extensive simulation experiments in

chapter 2 show the superiority of QL in that simple idealized setting.

When there is customer abandonment, the QL predictor overestimates the potential

delay, because customers in queue may abandon before entering service, and QL fails

to take that into account. That is confirmed by our simulation results in §3.6, but

we now analytically quantify the effect for the Markovian M=M=s +M model. To
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do so, we use the steady-state fluid approximations to the M=M=s+M model in the

ED regime discussed in §3.2. In the steady-state fluid limit, all served customers

wait the same deterministic amount of time w in (3.3) and they all see the same

number of customers, q, in queue upon arrival. From (2.26) of Whitt (2004a),

q = s�
� (�� 1): (3.7)

In the fluid limit,

�QL(q) = q + 1
s� � q

s� = 1
� (�� 1) > w = 1

� ln(�) :

Consistent with intuition, we see that QL overestimates w . Indeed,

�QL(q)� ww = (�� 1)=� � ln (�)=�
ln (�)=� ; (3.8)

e.g., there is 10% relative error when � = 1:2, 19% relative error when � = 1:4, and

much greater error when � is larger. (Exploiting the asymptotic expansion of the

logarithm: ln (1 + �) � � � �2=2 when � is small, we can obtain the simple rough

approximation to (3.8) of (� � 1)=(3 � �) � (� � 1)=2 when � is slightly greater

than 1.)
Motivated by the simple form of the QL delay prediction, �QL(n) in (3.6), we now

propose modified queue-length-based delay predictors that account for customer

abandonment, and that are also easy to implement in practice.
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3.3.2 The Markovian Queue-Length-Based Delay Predictor (QLm)

As in Whitt (1999a), this predictor QLm approximates the GI=GI=s +GI model by

the corresponding GI=M=s+M model with the same service-time and abandon-time

means. For the GI=M=s +M model, we have the representation:

WQ(n) �
n∑
i=0 Yi ; (3.9)

where the Yi are independent random variables with Yi being the minimum of s
exponential random variables with rate � (corresponding to the remaining service

times of customers in service) and i exponential random variables with rate � (cor-

responding to the abandonment times of the remaining customers waiting in line).

That is, Yi is exponential with rate s�+ i�. (Since WQ(n) is the sum of independent

exponential random variables, it has a hypoexponential distribution.) Therefore,

E[WQ(n)] =
n∑
i=0 E[Yi ] =

n∑
i=0

1
s�+ i� : (3.10)

The QLm predictor given to a customer who finds n customers in queue upon arrival

is �QLm(n) � E[WQ(n)]. Under the MSE criterion, QLm is the best possible, in

the GI=M=s + M model, but we find that it is not always so good for the more

general GI=GI=s + GI model. Non-exponential service-time and abandonment-

time distributions are commonly observed in practice; see Brown et al. (2005),

and Mandelbaum and Zeltyn (2004, 2007). It is therefore important to propose

other queue-length-based delay predictors that effectively cope with non-exponential

distributions. Approximations are needed because direct mathematical analysis is

difficult. Next, we propose two queue-length-based delay predictors, QLr and QLa,
exploiting approximations for performance measures in many-server queues with a
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non-exponential abandonment-time distribution, developed in Whitt (2005b, 2006).

3.3.3 The Simple-Refined Queue-Length-Based Delay Predictor

(QLr)

We now propose a simple refinement of QL by making use of the steady-state fluid

approximations to the general G=GI=s + GI model, in the ED limiting regime, as

developed by Whitt (2006). For that purpose, let F be the cumulative distribution

function (cdf) of the abandon-time distribution, and let F c be the complementary

cdf (ccdf) associated with F . (That is, F c(t) = 1� F (t), for all t.) In this steady-

state fluid limit, the deterministic waiting time w and the deterministic queue length

q are given by Equations (3.6) and (3.7) of Whitt (2006), which we restate. Since

“rate in” � �F c(w) = s� � “rate out”, we have:

�F c(w) = 1 : (3.11)

The associated equation for q is

q = �
∫ w
0 F c(x)dx = s��

∫ w
0 F c(x)dx : (3.12)

In the fluid limit, QL estimates a customer’s delay as the deterministic quantity:

�QL(q) = q + 1
s� � q

s� = �
∫ w
0 F c(x)dx :

For QLr , we propose computing the ratio � = w=(q=s�) = ws�=q (after solving

numerically for w and q), and using it to refine the QL predictor. That is, the new
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delay prediction is:

�QLr (n) � � � �QL(n) = �(n + 1)=s� :
The QLr predictor is appealing because it is only a minor modification of the QL pre-

dictor, but performs much better in models with customer abandonment, as we show

in §3.6. In particular, it is remarkably effective with non-exponential abandonment-

time distributions. Note that in addition to s, n and �, we need to know � or,

equivalently, �, and the abandonment-time cdf F in order to implement QLr .

3.3.4 The Exponential Abandonment Case (QLmr )

We now propose a modification of QLr which does not depend on �. It is based on

assuming that the abandonment-time cdf F is exponential. Using the corresponding

values of w and q for the GI=M=s+M model, given respectively by (3.3) and (3.7),

we obtain the ratio � = ln (�)=(��1). From (3.7), we get � = 1+�q=s� , yielding

� = ln (1 + �q=s�)
�q=s� :

The corresponding delay prediction, as a function of n, is given by

�QLmr (n) = � � �QL(n) = ln (1 + �n=s�)
�n=s� � n + 1

s� :
Thus, the implementation of QLmr requires knowledge of n, s, �, and �, but not

of � or, equivalently, �. It approximates the abandonment-time distribution by the

exponential distribution. We will see that QLmr performs nearly the same as QLm,

which is good when the abandonment is nearly exponential, but not necessarily
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otherwise.

3.3.5 The Approximation-Based Queue-Length Delay Predictor

(QLa)

Our most promising predictor QLa draws on the approximations in Whitt (2005b):

It approximates the GI=GI=s + GI model by the corresponding GI=M=s + M(n)
model, with state-dependent Markovian abandonment rates.

We begin by describing the Markovian approximation for abandonments, as in §3 of

Whitt (2005b). As an approximation, we assume that a customer who is jth from

the end of the queue has an exponential abandonment time with rate �j , where �j
is given by

�j � h(j=�); 1 � j � k ; (3.13)

k is the current queue length, and h is the abandonment-time hazard-rate function,

defined as h(t) � f (t)=F c(t), t � 0, where f is the corresponding density function

(assumed to exist). Having �j depend on h instead of F is convenient, because it is

natural to prediction F via h; e.g., see Brown et al. (2005). From (3.13), we see

that the predictor QLa depends on the abandonment distribution having a relatively

smooth density. We assume that is the case.

We now explain the derivation of (3.13). If we knew that a given customer had

been waiting for time t, then the rate of abandonment for that customer, at that

time, would be h(t). The goal is to produce, as an approximation, abandonment

rates that depend on a customer’s position in queue, and on the length of that

queue. We therefore need to prediction the elapsed waiting time of that customer,
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given the available state information. To that end, assume that the queue length

at an arbitrary time is k , and consider the customer, Cj , who is jth from the end

of the line, 1 � j � k . If there were no abandonments, then there would have

been exactly j � 1 arrival events since Cj arrived. Assuming that abandonments

are relatively rare compared to service completions, a reasonable prediction is that

there have been j arrival events since Cj arrived. Since a simple rough prediction for

the time between successive arrival events is the reciprocal of the arrival rate, 1=�,

the elapsed waiting time of Cj is approximated by j=� and his abandonment rate

by (3.13). The associated total abandonment rate from the queue in that system

state is �k =∑kj=1 �j =∑kj=1 h(j=�), k � 1, and �0 � 0.
For the GI=M=s +M(n) model, we need to make further approximations in order

to describe the potential waiting time of a customer who finds n other customers

waiting in line, upon arrival. We have the approximate representation:

WQ(n) �
n∑
i=0 Xi ; (3.14)

where Xn�i is the time between the ith and (i + 1)st departure events. There is

no difficulty for the first departure: Xn is the minimum of s exponential random

variables with rate � (corresponding to the remaining service times of customers in

service), and n exponential random variables with rates �j , 1 � j � n, (corresponding

to the abandonment times of the remaining customers waiting in line). That is, Xn
has an exponential distribution with rate s�+∑nj=1 �j = s�+ �n.
The distribution of the remaining Xi ’s is more complicated. Since individual cus-

tomers have different abandonment rates which, in our framework, depend on how

long these customers have been waiting in line, we need to consider the dynamics

of the system over time to determine, after each departure, who are the remaining
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customers and what are their individual abandonment rates (in order to compute the

resulting total abandonment rate). To simplify matters, we propose a further ap-

proximation, which is a slight modification of the argument in §7 of Whitt (2005b).

Here is what we do: As a further approximation, we assume that successive departure

events are either service completions, or abandonments from the head of the line.

We also assume that an prediction of the time between successive departures is

1=�. As a result of these extra assumptions, we approximate the Xi ’s in (3.14)

by exponential random variables. Let Xn�l , which is the time between the lth and

(l + 1)st departure events, have an exponential distribution with rate s�+ �n � �l .
This is appropriate because it is the minimum of s exponential random variables

with rate � (corresponding to the remaining service times of customers in service),

and n � l exponential random variables with rates �i , l + 1 � i � n (corresponding

to the abandonment times of the customers waiting in line).

The QLa delay predictor given to a customer who finds n customers in queue upon

arrival is

�QLa(n) =
n∑
i=0

1
s�+ �n � �n�i : (3.15)

Since QLa coincides with QLm in the GI=GI=s +M model, it is the optimal delay

predictor in the GI=M=s +M model under the MSE criterion. But, in contrast to

QLm, this new queue-length-based predictor also performs remarkably well in the

general GI=GI=s+GI model. The simulation experiments of §3.6 suggest that QLa
is uniformly superior to all other delay predictors, in all models considered.

We emphasize that all queue-length-based predictors apply equally well to steady-

state and transient settings. They differ in the amount of information that their

implementation requires. It is significant that QL, QLm, and QLmr are all independent
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of the arrival process: For these three predictors, the arrival process can be arbitrary,

even non-stationary. The QLr and QLa predictors require knowledge of the arrival

rate �, which requires some degree of stationarity. (There should not be too much

variation over time.)

3.4 Candidate Delay-History-Based Delay predictors

In this section, we briefly describe alternative delay predictors based on recent cus-

tomer delay history in the system. For a more detailed description, including per-

formance approximations and refinements, see chapters 1 and 2. We emphasize

that delay-history-based predictors apply directly to more complex settings, such as

models including customer response to delay announcements.

3.4.1 The Last-To-Enter-Service (LES) Delay Predictor

As in Armony et al. (2008), a candidate delay predictor based on recent customer

delay history is the delay of the last customer to have entered service, prior to our

customer’s arrival. That is, letting wL be the delay of the last customer to have

entered service, the corresponding LES delay prediction is: �LES(wL) � wL. As

discussed in Whitt (1999a), the possibility of making reliable delay estimations is

enhanced by exploiting information about the current state of the system. Thus we

anticipate that queue-length-based predictors should be more effective than LES.

Nevertheless, simulation experiments in §3.6 show that LES is relatively accurate in

all models considered.
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3.4.2 Other Delay-History-Based Delay predictors

We can consider alternative delay-history-based predictors, in addition to LES.

Closely related is the elapsed waiting time of the customer at the head of the

line (HOL), assuming that there is at least one customer waiting at the new arrival

epoch.

Another alternative delay predictor is the delay of the last customer to have com-

pleted service, LCS. We naturally would want to consider this alternative predictor

if we only learn customer delay experience after service is completed. That might

be the case for customers and outside observers. Under some circumstances, the

LCS and LES predictors will be similar, but they typically are very different when s
is large, because the last customer to complete service may have experienced his

waiting time much before the last customer to enter service, since customers need

not depart in order of arrival.

Thus, we are led to propose other candidate delay predictors based on the delay

experience of customers that have already completed service. RCS is the delay

experienced by the customer that arrived most recently (and thus entered service

most recently) among those customers who have already completed service. We

found that RCS is far superior to LCS when s is large.

Through analysis and extensive simulation experiments, we conclude that the LES

and HOL predictors are very similar, with both being slightly more accurate than

RCS and much more accurate than LCS. Here, we only discuss LES.
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3.5 Heavy-Traffic Limits for Several Predictors in the

G=M=s +M Model

Since we are considering overloaded systems with � > 1, it is natural to develop

analytical approximations for the mean-squared errors of our predictors by consider-

ing stochastic-process limits in the ED many-server heavy-traffic limiting regime, as

specified in §3.2. As before, we add a subscript s to indicate the dependence upon

s and then let s !1.

In this section we establish several limits for the G=M=s + M model in the ED

regime. Throughout this section we assume that the arrival process satisfies a

functional central limit theorem (FCLT): Let As(t) count the number of arrivals

in the interval [0; t] in model s. We assume that As(t) � A(st) for some given

arrival process A with arrival rate �. Let �As(t) = As(t)=s � A(st)=s for t � 0.
Let D � D([0;1);R) be the function space of all right continuous real-valued

functions with left limits, endowed with the usual Skorohod (J1) topology; e.g., see

Whitt (2002). We assume that A satisfies a functional weak law of large numbers

(FWLLN) and a FCLT refinement:

�As(t)) �t in D and
ps( �As(t)� �t))√�c2aB(t) in D as s !1;

(3.16)

where B is a standard Brownian motion. That condition will be satisfied if A is a

renewal process with an interarrival-time distribution having finite first and second

moments. As usual, the arrival process affects the limits for the other random

quantities (the predictors) only via the two normalization constants � and c2a . When

A is a renewal counting process, c2a is the SCV of an interarrival time.

We start by considering the Markovian predictor QLm, which is the best possible
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predictor for the G=M=s+M model, under the MSE criterion. It does not depend on

the arrival process. Recall that the waiting time for an arrival that finds n customers

in queue upon arrival is given by (3.9). We will apply the following lemma, which is

Lemma 6.1 of Talreja and Whitt (2008).

Lemma 3.5.1 For the G=M=s + M model in the ED many-server heavy-traffic

regime,

E[WQ;s(bstc)]! c(t); sV ar(WQ;s(bstc)! d(t) (3.17)

and

ŴQ;s(t) � ps (WQ;s(bstc)� c(t))) B(d(t)) in D as s !1; (3.18)

where B is a standard Brownian motion, while c and d are the deterministic real-

valued functions

c(t) � 1
� ln

(
1 + �t

�
)

and d(t) � t
�(�+ �t) : (3.19)

As a consequence of the stochastic-process limit in (3.18), we obtain the one-

dimensional limit

ps (WQ;s(bstc)� c(t))) N(0; d(t)) in R as s !1 for each t:
(3.20)

As a further consequence, we obtain the following result for the best-possible pre-

dictors �QLm;s (n). We use a random time change by the fluid limit

�Qs(1) � Qs(1)
s ) q � �� �

� as s !1; (3.21)
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from Theorem 2.3 of Whitt (2004a) or Theorem 6.1 of Talreja and Whitt (2008).

Theorem 3.5.1 For the G=M=s + M model in the ED many-server heavy-traffic

regime,

sMSE(�QLm;s (bstc)) � sV ar(WQ;s(bstc))! d(t) as s !1 (3.22)

for each t > 0, where d(t) is given in (3.19) and

sMSE(�QLm;s (Qs(1))) � sV ar(WQ;s(Qs(1))) d(q) � q
�� �

�� �
���

as s !1: (3.23)

As a consequence (after establishing appropriate uniform integrability to get con-

vergence of moments from convergence in distribution, which is not difficult at

this point), we get associated convergence of moments from the convergence in

distribution in (3.23), i.e.,

sE[MSE(�QLm;s (Qs(1)))]! d(q) as s !1: (3.24)

From either (3.23) or (3.24), we get the approximation

E[MSE(�QLm;s (Qs(1))] � �� �
s��� : (3.25)

Note that the FCLT normalization constant c2a does not appear in (3.23)–(3.25).

Other predictors that do not exploit knowledge of the queue length will fare worse,

largely according to c2a . First, we can apply an extension of Theorem 6.4 of Talreja

and Whitt (2008) to describe the asymptotic behavior of the no-information predic-

tor Ws(1). We extend the result for the M=M=s +M model to the G=M=s +M
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model, which is not difficult, reasoning as in §7.3 of Pang et al. (2007). First, we

can extend Theorem 6.1 of Talreja and Whitt (2008) in that way to get an ED

stochastic-process limit for the queue-length process in the G=M=s+M model, get-

ting an Ornstein-Uhlenbeck diffusion-process limit with infinitesimal mean �(x) =
��x and an infinitesimal variance �2(x) = �(c2a + 1), which in turn leads to a limit

for the steady-state queue lengths. We then apply that result to get a generalization

of the limit for the steady-state waiting time in Theorem 6.4 of Talreja and Whitt

(2008).

Theorem 3.5.2 For the G=M=s + M model in the ED many-server heavy-traffic

regime,

Q̂s(1) � ps( �Qs(1)� q)) N
(
0; �(c2a + 1)

2�
)

as s !1 (3.26)

and

Ŵs(1) � ps(Ws(1)� w)) N (0; �2w) as s !1; (3.27)

where �2w � 1=��+ (c2a � 1)=2��; with w in (3.3) and q in (3.21).

Note that the variance terms in Theorem 3.5.2 simplify when c2a = 1. We immedi-

ately obtain the limit for the MSE of the no-information (NI) predictor, assuming

appropriate uniform integrability. The no-information predictor can be either the

mean steady-state waiting time E[Ws(1)] or the fluid limit w , because of the fluid

limit in (3.3).

Corollary 3.5.1 In the setting of Theorem 3.5.2, assuming necessary uniform inte-

grability,

sMSE(�NI;s) � sV ar(Ws(1))! 1
�� + c2a � 1

2�� as s !1: (3.28)
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Combining the limits in (3.23) and (3.28), we obtain the following

Corollary 3.5.2 In the setting of Theorem 3.5.2, assuming necessary uniform inte-

grability,

MSE(�NI;s)E[MSE(�QLm;s (Qs(1))] !
2�+ �(c2a � 1)

2(�� �) > 1 as s !1: (3.29)

We now establish corresponding results for the delay-history-based predictor LES.

We exploit the fact that we can represent WLES(wL) in terms of the random variable

WQLm;s (n) in (3.9) and a net-input process Ns � fNs(t) : t � 0g over the interval

[0; wL], i.e.,

WLES;s(wL) � WQ;s(Ns(wL)) �
Ns(wL)∑
i=0 Xs;i ; (3.30)

where Ns(wL) counts the number of arrivals in the interval [0; wL] who do not

abandon, in system s. Formula (3.30) is not an exact relation because it does

not account for the state change since the last customer entered service and the

conditioning on both the LES customer and the new arrival epochs, but that change

is clearly asymptotically negligible in the ED many-server limiting regime.

It is significant that the net-input stochastic process Ns has the structure of the

number in system in a G=M=1 infinite-server system, starting out empty, with

arrival rate �s � �s and individual service rate equal to our abandonment rate

�. The Markovian M=M=1 special case is very well studied; e.g., see Eick et al.

(1993a, b). In particular, it is well known that Ns(t) has a Poisson distribution for

each s and t with

E[Ns(t)] = s�
�
(1� e��t) ; t � 0: (3.31)

The heavy-traffic limit for more general infinite-server models, starting out empty,
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was established by Borovkov (1967), as reviewed on p. 176 of Whitt (1982b).

Theorem 3.5.3 (Borovkov 1967) For the G=M=1models under consideration, with

arrival rate �s = �s and service rate �,
�Ns(t) � Ns(t)s ) a(t) � �

�
(1� e��t) in D as s !1 (3.32)

and

N̂s(t) � ps( �Ns(t)� a(t))) Ĝ(t) in D as s !1; (3.33)

where Ĝ � fĜ(t) : t � 0g is a Gaussian stochastic process with

Ĝ(t) d= N(0; �2n(t)) where �2n(t) � a(t) + �(c2a � 1)
2�

(1� e�2�t) ; (3.34)

for a(t) defined in (3.32) and c2a in (3.16).

We apply Theorem 3.5.3 to establish the following results for LES. To go beyond the

M=M=s +M model to treat the more general G=M=s +M model, we add an extra

assumption here. We assume that the limits for N̂s in (3.33) and for Ŵs(1) in (3.27)

hold jointly with independent limits. That holds automatically if the arrival process

has independent increments (which is covered by theM case), because the evolution

of Ns occurs after the arrival of the customer with the observed LES waiting time

Ws(1). For renewal processes, that joint convergence with independent limits

should also hold because the interarrival times are i.i.d. and the arrivals are very

fast. We add this condition to the general FCLT assumed in (3.16).

Theorem 3.5.4 For the G=M=s +M model in the ED many-server limiting regime

(assuming the extra assumption immediately above and the necessary uniform inte-
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grability for the moment convergence), as s !1,

�LES;s(Ws(1)) � Ws(1) ) w � 1
�
(
ln
(�
�
))

;
ŴLES;s(Ws(1)) � ps (WLES;s(Ws(1))�Ws(1)) ) N(0; �2LES); (3.35)

sE[MSE(�LES;s(Ws(1))] ! �2LES; (3.36)

where

�2LES � d(a(w)) + �2n(w)
�2 +

(�� �
�

)2 �2w = 2d(q) + (c2a � 1)(�� �)
��2 ; (3.37)

for �2w in Theorem 2, �2n(t) in (3.34), a(w) = q and d(q) = q=��.

Proof of Theorem 3.5.4. We now prove the convergence in distribution in (3.35).

The proof follows the general approach used to prove Theorem 6.4 of Talreja and

Whitt (2008), exploiting stochastic-process limits in order to obtain the desired

one-dimensional limit in R. As in (6.37) of Talreja and Whitt (2008), we use

the continuous mapping theorem with the composition map to treat random time

changes. We start with the joint convergence

(ŴQ;s(t); N̂s(t); Ŵs(1))) (B(d(t)); Ĝ(t); N(0; �2w)) in D2 � R (3.38)

for the processes defined in (3.18), (3.33) and (3.27), where the limits are mutually

independent.

For the M=M=s+M model, we can obtain the joint convergence from the individual

limits established above, because we can regard the component processes on the

left as mutually independent. That requires some comment, however. First in

time we have the waiting time for the last customer to enter service, which is

distributed asymptotically the same as Ws(1). Then we have the buildup of the
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queue behind this customer until this customer starts service, given by N̂s(t). Finally,

we have the remaining times between successive departures after the new arrival

enters the system, as given by ŴQ;s(t), which involves independent exponential

random variables. These are mutually independent with reference to the designated

arrival at one fixed time, for whom we are doing the prediction. The processes are

well defined as independent random elements of D, but they only correctly apply to

describe our system at a single time, as stated in the final one-dimensional limit in

(3.35). (In the case of the G=M=s +M model, we assume that the joint limit of

(N̂s(t); Ŵs(1)) is the same as if these were independent.)

Assuming the limit in (3.38), since �Ns converges to a deterministic limit, we can

append the limit for �Ns to get

(ŴQ;s(t); N̂s(t); �Ns(t); Ŵs(1))) (B(d(t)); Ĝ(t); a(t); N(0; �2w)) in D3 � R:
(3.39)

We can now apply the continuous mapping theorem with composition to perform a

random time change with �Ns to obtain the limit

ŴQ;s( �Ns(t)) � ps (WQ;s(Ns(t))� c( �Ns(t)))) B(d(a(t))) in D
as s !1; (3.40)

jointly with the limit in (3.39), where B is the given standard Brownian motion and

a(t) is defined in (3.32). We can now apply a random-time-change argument one

more time with Ws(1) to obtain the limit

Ẑs � ps (WQ;s(Ns(Ws(1)))� c( �Ns(Ws(1))))
) B(d(a(w))) d= N(0; d(a(w))) in R as s !1; (3.41)
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again jointly with the limit in (3.39), where again the limit involves the same Brow-

nian motion B.

We obtain the desired limit in (3.35) by writing

ŴLES;s(Ws(1)) � ps (WLES;s(Ws(1))�Ws(1)) � Ẑs + Ŷs (3.42)

for Ẑs in (3.41) and

Ŷs � ps (c( �Ns(Ws(1)))�Ws(1)) (3.43)

and establishing a limit for Ŷs in (3.43) within the framework of the initial limits

in (3.39). In order to make a connection to the given limits for (N̂s(t); Ŵs(1)) in

(3.39), we exploit a Taylor series expansion for the functions c(t) and a(t) in (3.19)

and (3.32). Note that

c(q) = w � 1
� ln (�); a(w) = q � �� �

� and d(q) = q
��: (3.44)

Hence, d(a(w)) = d(q) = q=(��).
We write

Ŷs � ps (c( �Ns(Ws(1)))�Ws(1)) � Ŷs;1 + Ŷs;2 + Ŷs;3; (3.45)

where

Ŷs;1 � ps (c( �Ns(Ws(1))� c(a(Ws(1)))) ;
Ŷs;2 � ps (c(a(Ws(1)))� c(a(w))) ;
Ŷs;3 � ps (c(a(w))�Ws(1)) ; (3.46)



Chapter 3. Delay Prediction in the GI=GI=s + GI Model 108

Using a Taylor series expansion of c , we see that

Ŷs;1 � c 0(a(w))ps ( �Ns(Ws(1))� a(Ws(1)))) 0; (3.47)

where c 0(a(w)) = 1=�. By Theorem 3.5.3,

Ŷs;1 ) 1
�Ĝ(w) d= N(0; �2n(w)=�2) as s !1: (3.48)

Using a Taylor series expansion of c � a, noting that a0(w) = �, we get

Ŷs;2 � c 0(a(w))a0(w)ps (Ws(1)� w))) 0; (3.49)

so that, by Theorem 3.5.2,

Ŷs;2 ) �
�N(0; �2w) as s !1: (3.50)

Similarly, using the relation c(a(w)) = c(q) = w and replacing c(a(w)) by w , we

get

Ŷs;3 �ps (w �Ws(1))) 0; (3.51)

so that, by Theorem 3.5.2 again,

Ŷs;3 ) N(0; �2w) as s !1; (3.52)

where the limiting random variables N(0; �2w) in (3.50) and (3.52) are identical. By

these constructions, we obtain convergence of the vector (Ŷs;1; Ŷs;2; Ŷs;3) jointly with

the initial limits in (3.39) and thus also jointly with Ẑs in (3.41). The processes

Ŷs;i are each asymptotically equivalent to processes that are simple functions of the

processes in the original limit (3.39).
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Hence,

Ŷs � Ŷs;1 + Ŷs;2 + Ŷs;3 ) N
(
0; �2n(w)

�2 + (�� �)2�2w�2
)
: (3.53)

We can thus obtain the limit from (3.41)–(3.43), (3.45), (3.46) and (3.53) by

adding the normal components.

Corollary 3.5.3 Consider the setting of Theorem 3.5.4. For theM=M=s+M model,

E[MSE(�LES;s(Ws(1))]
E[MSE(�QLm;s (Qs(1))] ! 2 as s !1: (3.54)

For the D=M=s +M model,

E[MSE(�LES;s(Ws(1))]
E[MSE(�QLm;s (Qs(1))] ! (2� ��1) > 1 as s !1: (3.55)

For the more general G=M=s +M model,

E[MSE(�LES;s(Ws(1))]
E[MSE(�QLm;s (Qs(1))] ! r(LES;QLm) as s !1; (3.56)

where

r(LES;QLm) = 2 (� 2 or � 2) if and only if c2a = 1 (� 1 or � 1):

From (3.55), we see that QLm is only slightly better than LES in the D=M=s +M
model when � � �=� is only slightly greater than 1. Combining the MSE ratio limits

in Theorems 3.5.1 and 3.5.4, we obtain

Corollary 3.5.4 For the M=M=s +M model in the ED many-server limiting regime,

E[MSE(�LES;s(Ws(1))]
MSE(�NI;s) ! 2(�� 1)

� ; (3.57)
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so that LES is asymptotically more (less) efficient than NI if � < 2 (� > 2).
We conclude this section by stating a CLT for the steady-state waiting time, and

thus the NI delay predictor, in the M=M=s + GI model in the ED regime, which is

Theorem 6.1 (e) of Zeltyn and Mandelbaum (2005).

Theorem 3.5.5 (Zeltyn and Mandelbaum 2005) For the M=M=s+GI model in the

ED regime, where the abandonment-time cdf F has density f , Ws(1) ) w for w
in (3.11) and

ps(Ws(1)� w)) N(0; 1=�f (w)) as s !1: (3.58)

3.6 Simulation Results for the M=M=s + GI Model

In this section, we present simulation results quantifying the performance of the

alternative queue-length-based delay predictors of §3.3, and of the LES delay pre-

dictor, with exponential and non-exponential abandonment-time distributions; i.e.,

we consider the M=M=s + GI model. For the abandonment-time distribution, we

consider M (exponential), H2 distribution (hyperexponential with SCV equal to 4
and balanced means), and E10 (Erlang, sum of 10 exponentials) distributions. We

consider H2 (E10) to consider high (low) variability distributions relative to M.

3.6.1 Description of the Experiments

We vary the number of servers, s, but consider only relatively large values (s � 100),
because we are interested in large service systems. We let the service rate, �, be

equal to 1. We do this without loss of generality, since we are free to choose the
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time units in our system, and this assumption amounts to measuring time in units

of mean service time. We also let the abandonment rate, �, be equal to 1 because

that seems to be a representative value. We consider � = 0:2 and � = 5:0 in §3.8.

We vary � to get a fixed value of �, for alternative values of s. We let � = 1:4
in all models. This value is chosen to let our systems be significantly overloaded.

Because of abandonment, the congestion is not extraordinarily high. For example,

with s = 100 servers and exponential abandonments, the mean queue length is

about q � (� � 1)s=� � 40, while the average potential waiting time is about

w � q=s� � 0:4=� (less than half a mean service time).

Our simulation are steady-state simulations. The simulation results are based on 10
independent replications of 5 million events each, where an event is either a service

completion, an arrival event, or an abandonment from the system. In this section

we show plots of simulation estimates (see Figures 3.1-3.6) in addition to tables

with corresponding 95% confidence intervals (see Tables 3.2-3.4).

3.6.2 Results for the M=M=s +M model

In this model, QLa coincides with QLm. Therefore, we do not include separate

results for QLa. Consistent with theory in §3.3, Figure 3.1 shows that QLm is

the best possible, under the MSE criterion. The RRASE for QLm ranges from

about 14% for s = 100 to about 4% when s = 1000. We see that the accuracy

of this predictor improves as the number of servers increases. Figure 3.2 shows

that s � ASE(QLm), the ASE of QLm multiplied by the number of servers s, is

nearly constant for all values of s considered. In particular, Figure 3.2 shows that

s � ASE(QLm) � (�� �)=(���), as in (3.25) of §3.5. The relative error between

the simulation estimates for ASE(QLm) and the numerical value given by (3.25) is
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less than 1% throughout.

Note that all predictors are relatively accurate for this model, with the exception of

QL. For example, the RRASE of LES ranges from about 22% for s = 100 to about

7% for s = 1000. Also, Figure 3.2 shows that s�ASE(LES) � �2LES, consistent

with (3.36). Indeed, the relative error between the simulation estimates and the

numerical value given by (3.37) is less than 1% throughout. Figure 3.2 shows that

s�ASE(NI) � 1=��, as in (3.28), with c2a = 1. The relative error between the

simulation estimates for ASE(NI) and the numerical value given by (3.28) is less

than 2% throughout. Finally, Figure 3.2 shows that s � ASE(QL) is monotone

increasing in s.
Table 3.2 shows that, consistent with (3.54), the LES predictor performs worse than

QLm, but not greatly so: The relative error between the simulation estimates for

ASE(LES)/ASE(QLm) and the numerical value, 2, given by (3.54) is less than 1%
throughout. It is important to note that this is consistent with the results in chapter

2 for the GI=M=s model; e.g., see (2.37) and simulation results in §2.3. Consistent

with (3.29), the NI predictor is less efficient than QLm: The relative error between

the simulation estimates for ASE(NI)/ASE(QLm) and the numerical value, 3:5,
given by (3.29) is less than 1% throughout. The NI predictor also performs worse

than LES: The ratio ASE(NI)/ASE(LES) is close to 1:75 throughout. The relative

error between the simulation estimates for ASE(NI)/ASE(LES) and the numerical

value given by (3.57) is less than 2% throughout. Finally, the QL predictor performs

significantly worse than all the other predictors, particularly for large values of s. The

ratio ASE(QL)/ASE(QLm) ranges from about 3 when s = 100 to nearly 16 when

s = 1000.
The QLmr predictor is nearly identical to QLm. This can be easily explained: When

the number seen in queue upon arrival, n, is large, �QLm(n) can be approximated by
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Figure 3.1: ASE of the predictors in the
M=M=s+M model with � = 1:4 and � = 1:0.
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Figure 3.2: s � ASE of the predictors in the
M=M=s+M model with � = 1:4 and � = 1:0.

an integral (limit of the Riemann sum)

�QLm(n) �
∫ n
0

1
s�+ �x dx = ln (s�+ �n)� ln (s�) = 1

� ln (1 + �n=s�) :
On the other hand, we have that

�QLmr (n) �
[
ln
(�n
s� + 1

)
=
(�n
s�
)]

� n + 1
s� � 1

� ln (1 + �n=s�) :
So that, for large n, the two predictors QLm and QLmr should perform nearly the

same.

3.6.3 Results for the M=M=s +H2 model

Figure 3.3 and Table 3.3 show that the best delay predictor for this model is QLa.
The corresponding RRASE ranges from about 20% for s = 100 to about 6% when

s = 1000. Once more, we see that the accuracy of this predictor improves as the

number of servers increases. The QLr predictor performs nearly the same as QLa,
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Efficiency of the predictors in the M=M=s +M model with � = 1:4 and � = 1:0
s ASE[�QLm ] ASE[�QLmr ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 2:867�10�3 2:869�10�3 3:130�10�3 8:693�10�3 5:772�10�3 1:00�10�2�1:76�10�5 �1:78�10�5 �1:89�10�5 �3:20�10�5 �2:79�10�5 �5:97�10�5
300 9:587�10�4 9:601�10�4 1:039�10�3 5:602�10�3 1:922�10�3 3:351�10�3�6:86�10�6 6:92�10�6 �6:41�10�6 �2:64�10�5 �1:50�10�5 �6:03�10�5
500 5:761�10�4 5:661�10�4 6:224�10�4 5:017�10�3 1:153�10�3 2:038�10�3�1:94�10�6 �3:86�10�6 �2:94�10�6 �2:41�10�5 �9:99�10�6 �2:26�10�5
700 4:104�10�4 4:201�10�4 4:440�10�4 4:682�10�3 8:166�10�4 1:441�10�3�1:82�10�6 2:839�10�4 �2:71�10�6 �2:40�10�5 �5:78�10�6 �1:57�10�5

1000 2:892�10�4 2:839�10�4 3:136�10�4 4:492�10�3 5:752�10�4 1:019�10�3�3:48�10�6 �3:86�10�6 �3:09�10�6 �1:54�10�5 �6:91�10�6 �3:00�10�5
Table 3.2: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=M=s +M model with � = 1:4 and � = 1:0. The ASE’s are measured in units of
mean service time squared per customer.

and is only slightly outperformed. The ratio ASE(QLr)/ASE(QLa) is close to 1 for

all values of s. The QLm predictor performs well but it is now slightly outperformed

by QLr . The two are nearly the same when s = 100; the ratio ASE(QLm)/ASE(QLr)
is close to 1 when s = 100 but closer to 2 when s = 1000. The RRASE for QLm
ranges from about 20% when s = 100 to about 8% when s = 1000.
The LES predictor performs worse than QLa, QLm, and QLr when s = 100 but

nearly the same as QLm when s = 1000. The RRASE of the LES predictor

ranges from about 30% when s = 100 to about 10% when s = 1000. The ra-

tio ASE(LES)/ASE(QLap) is close to 2 for all values of s, suggesting that our

analytical results of §3.5 should extend to general abandonment-time distributions.

The NI predictor performs worse than LES but not as bad as QL. The ratio ASE(NI)/

ASE(QLa) is close to 3.5 for all values of s considered. As above, the efficiency of

QL is degrading as the number of servers increases. The ratio ASE(QL)/ASE(QLa)



Chapter 3. Delay Prediction in the GI=GI=s + GI Model 115

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
x 10

−3 ASE in the M/M/s + H
2
 Model with ρ = 1.4

s

A
S

E

 

 

QL
a

QL
r

QL
m

LES
NI
QL

Figure 3.3: ASE of the predictors in the
M=M=s+H2 model with � = 1:4 and � = 1:0.
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Figure 3.4: s � ASE of the predictors in the
M=M=s+H2 model with � = 1:4 and � = 1:0.

ranges from about 2 when s = 100 to about 10 when s = 1000. Once more, the

need to go beyond QL is evident.

Consistent with §3.5, Figure 3.4 shows that all predictors, except QL and QLm, have

an ASE which is inversely proportional to the number of servers, but mathematical

support for the predictors (besides NI) has yet to be provided, with non-exponential

abandonment distributions. Beyond Theorems 3.5.2 and 3.5.5, the NI behavior

is consistent with conjectured stochastic refinements to the fluid limits in Whitt

(2006).

3.6.4 Results for the M=M=s + E10 model

Figure 3.5 and Table 3.4 show that QLa is the best possible delay predictor, for this

model, except when s is very large (e.g., s = 700 or s = 1000). The corresponding

RRASE ranges from about 10% when s = 100 to about 3% when s = 1000.
The QLr predictor performs worse than QLa for smaller values of s, but slightly

outperforms QLa for larger values of s. The ratio ASE(QLr)/ASE(QLa) ranges
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Efficiency of the predictors in the M=M=s +H2 model with � = 1:4 and � = 1:0
s ASE[�QLa ] ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 1:859�10�3 2:100�10�3 2:032�10�3 4:662�10�3 3:866�10�3 6:503�10�3�6:52�10�6 �5:54�10�6 �6:31�10�6 �1:83�10�5 �8:10�10�6 �3:85�10�5
300 6:116�10�4 7:933�10�4 6:599�10�4 2:593�10�3 1:236�10�3 2:165�10�3�4:64�10�6 �7:62�10�6 �8:82�10�6 �2:25�10�5 �1:76�10�5 �2:09�10�5
500 3:695�10�4 5:367�10�4 3:921�10�4 2:205�10�3 7:331�10�4 1:311�10�3�2:19�10�6 �2:12�10�6 �2:47�10�6 �9:97�10�6 �5:41�10�6 �1:03�10�5
700 2:630�10�4 4:257�10�4 2:802�10�4 2:024�10�3 5:250�10�4 9:378�10�4�1:43�10�6 �1:89�10�6 �1:00�10�5 �2:35�10�6 �2:52�10�6 �1:07�10�5

1000 1:833�10�4 3:474�10�4 1:978�10�4 1:900�10�3 3:691�10�4 6:533�10�4�1:55�10�6 �1:43�10�6 �6:90�10�7 �5:93�10�6 �3:00�10�6 1:14�10�5
Table 3.3: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=M=s + H2 model with � = 1:4 and � = 1:0. The ASE’s are measured in units
of mean service time squared per customer.

from nearly 2 when s = 100 to nearly 0:9 when s = 1000. The QLm predictor,

which was nearly identical to QLa before, now performs worse particularly when

the number of servers is large; e.g., when s = 1000, ASE(QLm)/ASE(QLa) � 9.
The RRASE of QLm ranges from about 14% when s = 100 to about 10% when

s = 1000.
In contrast to previous cases, NI is the second or third most effective delay predictor

here, depending on the number of servers. It performs nearly as well as QLa, partic-

ularly when s is large. This confirms that NI can be a competitive delay predictor,

with customer abandonment. Figure 3.6 shows that the ASE’s of QLa, QLr , and

NI are all inversely proportional to the number of servers s. The LES predictor

also fares well but is slightly outperformed by QLa, QLr and NI. The correspond-

ing RRASE ranges from about 14% when s = 100 to about 3% when s = 1000.
Nevertheless, Figure 3.6 also shows that s� ASE(LES) equals a constant, for all
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Efficiency of the predictors in the M=M=s + E10 model with � = 1:4 and � = 1:0
s ASE[�QLa ] ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 5:388�10�3 9:400�10�3 6:317�10�3 8:097�10�2 8:810�10�3 6:077�10�3�1:54�10�5 �3:48�10�5 4:51�10�5 �2:47�10�4 �3:91�10�5 �2:63�10�5
300 1:955�10�3 7:211�10�3 2:139�10�3 7:211�10�2 2:933�10�3 2:040�10�3�5:13�10�6 �3:86�10�5 �1:83�10�5 �3:30�10�4 �3:22�10�5 �2:23�10�5
500 1:244�10�3 6:746�10�3 1:293�10�3 7:049�10�2 1:760�10�3 1:288�10�3�1:54�10�5 �2:68�10�5 �1:35�10�5 �2:48�10�4 �2:44�10�5 �2:61�10�5
700 9:572�10�4 6:584�10�3 9:319�10�4 6:975�10�2 1:241�10�3 9:966�10�4�8:31�10�6 �1:43�10�6 �1:00�10�5 �1:00�10�5 �2:35�10�6 �1:30�10�5

1000 7:369�10�4 6:454�10�3 6:694�10�4 6:902�10�2 8:830�10�4 8:242�10�4�1:96�10�5 �1:70�10�5 �1:13�10�5 �1:68�10�4 �1:28�10�5 �1:17�10�5
Table 3.4: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=M=s + E10 model with � = 1:4 and � = 1:0. The ASE’s are measured in units
of mean service time squared per customer.

values of s. Finally, QL is yet again the least effective predictor for this model. For

example, the ratio ASE(QL)/ASE(QLa) ranges from about 15 when s = 100 to

nearly 95 when s = 1000. That is why the corresponding ASE curve is not even

included in Figures 3.5 and 3.6.

3.7 Simulation Results for the M=GI=s +M Model

In this section, we present simulation results quantifying the performance of the

alternative delay predictors with non-exponential service-time distributions; i.e., we

consider the M=GI=s +M model. In this model, QLa coincides with QLm so we do

not include separate results for it. For the service-time distribution, we consider H2,
LN(1; 1) (lognormal with mean and variance equal to 1), D, and E10 distributions

in Tables 3.5, 3.6, 3.7, and 3.8, respectively. To illustrate problems with D service
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M=M=s + E10 model with � = 1:4 and � =
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Efficiency of the predictors in the M=H2=s +M model with � = 1:4 and � = 1:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 3:491�10�3 3:487�10�3 8:720�10�3 6:227�10�3 1:435�10�2�2:89�10�5 �1:75�10�5 �2:66�10�5 �3:61�10�5 �5:30�10�5
300 1:114�10�3 1:117�10�3 5:530�10�3 1:996�10�3 4:893�10�3�1:31�10�5 �9:83�10�6 �2:34�10�5 �1:73�10�5 �8:37�10�5
500 6:660�10�4 6:696�10�4 4:953�10�3 1:190�10�3 2:931�10�3�5:68�10�6 �5:68�10�6 �2:26�10�5 �1:14�10�5 �5:60�10�5
700 4:807�10�4 4:797�10�4 4:672�10�3 8:612�10�4 2:083�10�3�6:73�10�6 �5:59�10�6 �2:46�10�5 �1:23�10�5 �4:91�10�5

1000 3:362�10�4 3:346�10�4 4:489�10�3 6:136�10�4 1:494�10�3�3:16�10�6 �1:76�10�6 �1:62�10�5 �9:34�10�6 �5:50�10�5
Table 3.5: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=H2=s +M model with � = 1:4 and � = 1:0. The ASE’s are measured in units
of mean service time squared per customer.

times, we also show plots of simulation estimates in Figures 3.7 and 3.8. We let

� = � = 1:0, and vary �, for alternative values of s, to keep � = 1:4.
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Efficiency of the predictors in the M=LN(1; 1)=s +M model with � = 1:4 and � = 1:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 2:359�10�3 2:596�10�3 8:207�10�3 5:248�10�3 9:089�10�3�7:00�10�6 �9:02�10�6 �4:45�10�5 �2:37�10�5 �4:80�10�5
300 7:810�10�4 8:506�10�4 5:394�10�3 1:716�10�3 3:032�10�3�5:14�10�6 �5:68�10�6 3:36�10�5 �1:25�10�5 �5:30�10�5
500 4:663�10�4 5:0685�10�4 4:836�10�3 1:029�10�3 1:826�10�3�2:04�10�6 �2:12�10�6 �2:085�10�5 �7:29�10�6 �8:10�10�6
700 3:346�10�4 3:635�10�4 4:615�10�3 7:438�10�4 1:290�10�3�2:71�10�6 �3:37�10�6 �1:77�10�5 �6:47�10�6 �1:12�10�5

1000 2:340�10�4 2:548�10�4 4:443�10�3 5:290�10�4 8:942�10�4�1:84�10�6 �2:81�10�6 �2:54�10�5 �5:90�10�6 �2:46�10�5
Table 3.6: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=LN(1; 1)=s +M model with � = 1:4 and � = 1:0. The ASE’s are measured in
units of mean service time squared per customer.

3.7.1 The M=H2=s +M model

Table 3.5 shows that, with high variability in the service times, the results that

we get are not too different from those we get with M service times. The QLm
predictor is the most efficient predictor for this model. The RRASE of QLm ranges

from about 17% when s = 100 to about 5% when s = 1000. The QLr predictor

is only very slightly outperformed by QLm (the ratio ASE(QLm)/ASE(QLr) is very

close to 1 for all values of s). The LES predictor is relatively accurate as well: The

ratio ASE(LES)/ASE(QLm) is close to 1:8 for all values of s, suggesting possible

extensions for our analytical results for the GI=M=s +M model to the M=GI=s +
M model. The NI predictor is outperformed by QLm, QLr , and LES: The ratio

ASE(NI)/ASE(QLm) is close to 4 for all values of s considered.
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3.7.2 Results for the M=LN(1; 1)=s +M model

We consider the lognormal distribution for the service times because there is em-

pirical evidence suggesting a remarkable fit of the service-time distribution to the

lognormal distribution; e.g., see Brown et al. (2005). Results with LN service times

are consistent with those corresponding to M service times. Table 3.6 shows that

QLm is the most effective delay predictor for this model. The RRASE for QLm ranges

from approximately 14% when s = 100 to approximately 5% when s = 1000. The

QLr predictor is slightly less efficient than QLm: The ratio ASE(QLr)/ASE(QLm)

ranges from approximately 1:1 when s = 100 to approximately 1:08 when s = 1000.
The LES predictor is relatively accurate as well: The RRASE of LES ranges from

approximately 26% when s = 100 to approximately 7% when s = 1000. The NI

predictor does not perform as well as LES, nor as bad as QL. The QL predictor is the

least efficient predictor: the ratio ASE(QL)/ASE(QLm) ranges from approximately

4 when s = 100 to approximately 19 when s = 1000.

3.7.3 The M=D=s +M model

Figure 3.7 shows that there is a significant increase in ASE for all predictors with

deterministic (constant) service times, with performance tending to be independent

of s. However, even very low variability in the service times, e.g., the E10 distribution

with SCV equal to 0:1, is enough for our delay predictors to be relatively accurate

(see §3.7.4). With D service times, Figure 3.8 shows that s�ASE for all predictors

increases with s. That is, we do not see an improvement in performance in large

systems. In chapter 5, we will show that with time-varying demand and capacity,

our delay prediction techniques remain ineffective even with low variability in the

service times. Alternative delay prediction procedures, appropriate for deterministic
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service times, remain to be investigated.

Table 3.7 shows that the NI predictor, which uses no information at all beyond

the model, is the most effective delay predictor when s � 300. (For s = 100,
QLm slightly outperforms NI.) But, even the NI predictor is not very accurate: The

RRASE for NI is roughly equal to 25% for all values of s considered. The ASE’s for

QLm, QLr , QL, and LES do not vary much in this model; e.g., ASE(QLm) varies

little about 0:01, for all values of s considered.

3.7.4 The M=E10=s +M model

Table 3.8 shows that the proposed delay predictors remain effective even with very

low variability in the service times. The QLm predictor is the most effective delay

predictor for the M=E10=s+M model. The QLr predictor is nearly identical to QLm,

particularly when s is large enough (s � 300). Once more, the relative accuracy

of the delay predictors improves as s increases. For example, the RRASE for QLm
ranges from approximately 13% when s = 100 to approximately 4% when s = 1000.
The LES predictor is relatively accurate as well. The RRASE of LES ranges from

approximately 21% when s = 100 to approximately 7% when s = 1000.
The NI predictor does not perform as well as LES, nor as bad as QL. The QL

predictor is the least efficient predictor: The ratio ASE(QL)/ASE(QLm) ranges from

approximately 4 when s = 100 to approximately 22 when s = 1000. Consistent with

§3.5, Table 3.8 shows that all predictors, except QL, have an ASE which is inversely

proportional to the number of servers, but mathematical support for the predictors

has yet to be provided with non-exponential service-time distributions.
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Efficiency of the predictors in the M=D=s +M model with � = 1:4 and � = 1:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 9:171�10�3 1:066�10�2 1:772�10�2 1:525�10�2 9:316�10�3�3:08�10�3 �3:56�10�3 �4:08�10�3 �4:12�10�3 �1:59�10�3
300 1:492�10�2 1:698�10�2 2:400�10�2 2:511�10�2 8:553�10�3�1:91�10�3 �2:15�10�3 �2:48�10�3 �3:48�10�3 �1:084�10�3
500 1:560�10�2 1:771�10�2 2:469�10�2 2:585�10�2 7:806�10�3�2:85�10�3 �3:23�10�3 �3:72�10�3 �4:64�10�3 �6:00�10�4
700 1:259�10�2 1:433�10�2 2:071�10�2 2:015�10�2 8:232�10�31:590�10�3 1:797�10�3 2:053�10�3 2:566�10�3 �9:059�10�4

1000 1:417�10�2 1:611�10�2 2:267�10�2 2:246�10�2 7:566�10�3�1:515�10�3 �1:706�10�3 �1:964�10�3 �2:64�10�3 �4:711�10�4
Table 3.7: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=D=s +M model with � = 1:4 and � = 1:0. The ASE’s are measured in units of
mean service time squared per customer.

Efficiency of the predictors in the M=E10=s +M model with � = 1:4 and � = 1:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 2:024�10�3 2:405�10�3 8:249�10�3 5:052�10�3 6:284�10�3�6:51�10�6 �9:91�10�6 �4:27�10�5 �2:12�10�5 �2:63�10�5
300 6:790�10�4 7:972�10�4 5:439�10�3 1:687�10�3 2:111�10�3�2:48�10�6 �2:71�10�6 �2:39�10�5 �8:44�10�6 �2:51�10�5
500 4:072�10�4 4:775�10�4 4:857�10�3 1:001�10�3 1:266�10�3�2:81�10�6 �3:48�10�6 �2:04�10�5 �7:67�10�6 �1:81�10�5
700 2:946�10�4 3:449�10�4 4:632�10�3 7:147�10�4 9:006�10�4�1:41�10�6 �1:84�10�6 �2:20�10�5 �7:31�10�6 �1:64�10�5

1000 2:063�10�4 2:408�10�4 4:440�10�3 5:073�10�4 6:480�10�4�2:37�10�6 �2:89�10�6 �2:653�10�5 �3:95�10�6 �1:55�10�5
Table 3.8: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=E10=s +M model with � = 1:4 and � = 1:0. The ASE’s are measured in units
of mean service time squared per customer.
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Figure 3.7: ASE of the predictors in the
M=D=s+M model with � = 1:4 and � = 1:0.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

s

s 
× 

A
S

E

 s × ASE in the M/D/s+M Model with ρ = 1.4

 

 

NI
QL

m

QL
r

QL
s

LES

Figure 3.8: s � ASE of the predictors in the
M=D=s+M model with � = 1:4 and � = 1:0.

3.8 Simulations Results for the GI=M=s +M Model

In this section, we present simulation results quantifying the performance of the

alternative delay predictors with non-exponential interarrival-time distributions; i.e.,

we consider the GI=M=s +M model. For the interarrival-time distribution, we con-

sider D and H2 distributions. The simulation results of this section provide further

support to the theoretical results in §3.5. We also consider different abandonment

rates; specifically we let � = 0:2 and � = 5:0. As indicated by Formulas (3.3) and

(3.7), the queue length and delay tend to be inversely proportional to �. Thus,

changing � from 1:0 to 0:2 or 5:0 tends to change congestion by a factor of 5. The

system is very heavily overloaded when � = 0:2, but relatively lightly loaded when

� = 5:0. We consider the same values of s as before and we let � = 1. We vary �
to get a fixed value of � (� = 1:4), for alternative values of s. We present additional

simulation results for the GI=M=s +M model in §A.2.
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3.8.1 Results for the D=M=s +M model with � = 0:2

Table 3.9 compares the efficiencies of the alternative delay predictors in theD=M=s+
M model with � = 0:2. Consistent with theory, QLm is the optimal delay predic-

tor for this model, under the MSE criterion. The RRASE of QLm ranges from

approximately 35% when s = 100 to approximately 11% when s = 1000. The

QLr predictor is slightly less efficient than QLm: ASE(QLr)/ASE(QLm) is less than

1:05 for all values of s considered. The LES predictor is slightly less accurate,

with an RRASE ranging from approximately 40% when s = 100 to approximately

13% when s = 1000. The NI predictor is less accurate than LES, but not as bad

as QL. The QL predictor is, once more, the least effective predictor: The ratio

ASE(QL)/ASE(QLm) ranges from approximately 8 when s = 100 to approximately

71 when s = 1000.
Table 3.9 substantiates (3.55) and (3.29) of §3.5, that compare the performances

of QLm, LES and NI in the D=M=s +M model. Consistent with (3.55), Table 3.9

shows that the performance of LES is close to that of QLm, when the arrival process

is deterministic. The simulation estimates of ASE(LES)/ASE(QLm), for alternative

values of s, are remarkably close to the numerical value, approximately 1:286, pre-

dicted by (3.55); the relative error (RE) observed is less than 1% for all values of s
considered. Consistent with (3.29), Table 3.9 shows that the performance of NI is

worse than that of LES and QLm. The simulation estimates of ASE(NI)/ASE(QLm)

are also remarkably close to the numerical value, 2.25, predicted by (3.29); the RE

observed is less than 4% for all values of s considered.
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Efficiency of the predictors in the D=M=s +M model with � = 1:4 and � = 0:2
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 1:436�10�2 1:492�10�2 1:192�10�1 1:863�10�2 3:266�10�2�9:78�10�5 �9:40�10�5 �1:57�10�4 �1:64�10�4 �5:33�10�4
300 4:798�10�3 5:005�10�3 1:071�10�1 6:172�10�3 1:056�10�2�5:99�10�5 �6:08�10�5 �1:41�10�4 �7:45�10�5 �1:92�10�4
500 2:865�10�3 2:966�10�3 1:044�10�1 3:672�10�3 6:641�10�3�5:43�10�5 �5:24�10�5 �1:07�10�4 �6:67�10�5 �2:93�10�4
700 2:091�10�3 2:170�10�3 1:033�10�1 2:691�10�3 4:802�10�3�2:39�10�5 �1:90�10�5 �1:54�10�4 �3:23�10�5 �2:26�10�4

1000 1:435�10�3 1:507�10�3 1:026�10�1 1:859�10�3 3:030�10�3�1:15�10�5 �1:52�10�5 �1:20�10�4 �2:06�10�5 �1:05�10�4
Table 3.9: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the D=M=s +M model with � = 1:4 and � = 0:2. The ASE’s are measured in units of
mean service time squared per customer.

3.8.2 Results for the H2=M=s +M model with � = 5:0

Table 3.10 compares the efficiencies of the alternative delay predictors in theH2=M=s+
M model with � = 5:0, which makes the model more lightly loaded. Consistent with

theory, QLm is the optimal delay predictor for this model, under the MSE criterion.

The RRASE of QLm ranges from approximately 8% when s = 100 to approximately

2% when s = 1000.
In this more lightly loaded setting, the ASE’s of all the predictors are relatively low,

being smaller than for the M=M=s +M model with � = 1:0 in Table 3.2 by a factor

of about 4, despite having c2a = 4:0 instead of c2a = 1:0. However, the lighter

loading makes the ED heavy-traffic approximations less appropriate.

The QLr predictor is less efficient than QLm: ASE(QLr)/ASE(QLm) ranges from

approximately 1:5 when s = 100 to approximately 1:25 when s = 1000. The LES
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Efficiency of the predictors in the H2=M=s +M model with � = 1:4 and � = 5:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 7:193�10�4 1:059�10�3 2:217�10�3 2:393�10�3 3:101�10�3�2:63�10�6 �4:47�10�6 �1:01�10�5 �6:72�10�6 �1:42�10�5
300 2:008�10�4 2:675�10�4 7:240�10�4 7:569�10�4 1:169�10�3�7:85�10�7 �1:28�10�6 �2:63�10�6 �2:70�10�6 �5:82�10�6
500 1:167�10�4 1:495�10�4 4:792�10�4 4:540�10�4 7:624�10�4�7:05�10�7 �8:78�10�7 �2:68�10�6 �1:71�10�6 �6:07�10�6
700 8:277�10�5 1:042�10�4 3:856�10�4 3:280�10�4 5:714�10�4�4:12�10�7 �6:52�10�7 �2:50�10�6 �1:27�10�6 �4:72�10�6

1000 5:733�10�5 7:141�10�5 3:184�10�4 2:302�10�4 4:0951�10�4�2:48�10�7 �2:44�10�7 �1:34�10�6 �1:19�10�6 �4:15�10�6
Table 3.10: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the H2=M=s +M model with � = 1:4 and � = 5:0. The ASE’s are measured in units
of mean service time squared per customer.

predictor is less accurate, with an RRASE ranging from approximately 14% when

s = 100 to approximately 4% when s = 1000. The QL predictor performs slightly

worse than LES: The ratio ASE(QL)/ASE(QLm) ranges from about 3 when s = 100
to about 5 when s = 1000. The NI predictor is the least efficient predictor for this

model.

Table 3.10 substantiates (3.56) and (3.29) of §3.5, which compare the perfor-

mances of QLm, LES and NI in the H2=M=s +M model. Consistent with (3.56),

Table 3.10 shows that the performance of LES is significantly worse than that

of QLm, when the arrival process is highly variable. The simulation estimates of

ASE(LES)/ASE(QLm), for alternative values of s, are close to the numerical value,

approximately 4:143, predicted by (3.56), especially for large values of s; the RE

observed ranges from approximately �20% for s = 100 to approximately �3% when

s = 1000. We observe a relatively poor performance of the approximation in (3.56)
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when the number of servers is small. That is understandable because the system is

not very heavily loaded when � = 5:0. Consistent with (3.29), Table 3.10 shows

that the performance of NI is much worse than that of QLm, when the arrival pro-

cess is highly variable. The approximation in (3.29) performs poorly when s = 100
(RE � �40%) but becomes remarkably accurate when s = 1000 (RE � �1:5%).

3.9 Simulation Results for the M=GI=s + GI Model

In this section, we present simulation results quantifying the performance of the

alternative predictors in the M=GI=s + GI model, i.e., we consider different com-

binations of service-time and abandon-time distributions. We consider D and E10
distributions in Tables 3.11 and 3.12. We do not consider D abandonment times

because our QLa predictor requires a density. Constant service times cause a prob-

lem in all cases, but otherwise the predictors perform well. Results with higher

variability distributions, such as H2 for example, are not displayed here because they

are consistent with previous results obtained with M service or abandonment times.

3.9.1 The M=D=s + E10 model

Table 3.11 shows that we get slightly better results with deterministic service times

and low-variability abandonment times (Erlang with SCV = 0.1), than those we get

with the M=D=s+M model. The LES predictor is the most efficient predictor when

the number of servers s is large enough (s � 500). The RRASE for LES ranges

from about 13% when s = 100 to about 9% when s = 1000, so we see a slight

improvement in performance as s increases. The NI predictor is competitive as well,

and is the second most efficient predictor when s � 500. The QLa predictor is
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the most efficient predictor when s � 300, but not otherwise. The QLm predictor

performs poorly, but not as bad as QL which is the least efficient predictor. Table

3.11 shows that s � ASE of all predictors increase nearly linearly with s in the

M=D=s + E10 model.

3.9.2 The M=E10=s + E10 model

Table 3.12 shows that the proposed delay predictors remain effective, with very low

variability in the service times, even if combined with low-variability abandonment

times. The QLa predictor is the most effective delay predictor for theM=E10=s+E10
model. The NI predictor is competitive as well, and is the second most effective

predictor in this model. The LES predictor is relatively accurate as well. The NI

predictor does not perform as well as LES, nor as bad as QL. The QL predictor

is the least efficient predictor. Except for QLm, the relative accuracy of the delay

predictors improves as s increases. Indeed, the products s�ASE are nearly constant

for all predictors, except QLm, but mathematical support for the predictors has yet

to be provided with non-exponential service-time distributions.

3.10 Concluding Remarks

In this chapter, we proposed several delay predictors and showed that they are effec-

tive in the multiserver GI=GI=s+GI model. As a frame of reference, we considered

the classical delay predictor based on the queue length, QL, treated extensively in

chapter 2. We showed that QL performs poorly when there is significant customer

abandonment in the system, thus establishing the need to propose better ways of

making delay predictions.
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Efficiency of the predictors in the M=D=s + E10 model with � = 1:4 and � = 1:0
s ASE[�QLa ] ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 8:678�10�3 1:286�10�2 1:038�10�2 8:464�10�2 1:174�10�2 9:016�10�3�3:04�10�3 �3:05�10�3 �3:49�10�3 �3:17�10�3 �3:97�10�3 �2:92�10�3
300 7:377�10�3 1:384�10�2 9:827�10�3 7:902�10�2 7:809�10�3 8:230�10�3�9:69�10�4 �1:60�10�3 �1:81�10�3 �1:56�10�3 �1:13�10�3 �1:63�10�3
500 7:344�10�3 1:318�10�2 8:821�10�3 7:714�10�2 6:763�10�3 7:088�10�3�1:18�10�3 �9:99�10�4 �1:10�10�3 �9:55�10�4 �5:09�10�4 �1:11�10�3
700 7:336�10�3 1:296�10�2 8:412�10�3 7:628�10�2 5:718�10�3 6:805�10�3�9:29�10�4 �1:06�10�3 �1:18�10�3 �8:65�10�4 �4:15�10�4 �1:11�10�3

1000 7:269�10�3 1:303�10�2 8:327�10�3 7:575�10�2 5:316�10�3 6:828�10�3�6:57�10�4 �8:15�10�4 �9:03�10�4 �8:63�10�4 �3:16�10�4 �8:64�10�4
Table 3.11: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=D=s + E10 model with � = 1:4 and � = 1:0. The ASE’s are measured in units
of mean service time squared per customer.

Efficiency of the predictors in the M=E10=s + E10 model with � = 1:4 and � = 1:0
s ASE[�QLa ] ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 3:539�10�3 7:632�10�3 4:457�10�3 7:940�10�2 6:348�10�3 4:011�10�3�1:91�10�5 �1:44�10�5 �2:25�10�5 �2:75�10�4 �2:35�10�5 �1:78�10�5
300 1:295�10�3 6:603�10�3 1:502�10�3 7:181�10�2 2:102�10�3 1:364�10�3�7:50�10�6 �1:53�10�5 �1:45�10�5 �2:90�10�4 �1:75�10�5 �1:52�10�5
500 8:642�10�4 6:440�10�3 8:984�10�4 7:001�10�2 1:260�10�3 8:660�10�4�1:16�10�5 �1:88�10�5 �6:61�10�6 �2:56�10�4 �1:17�10�5 �1:33�10�5
700 6:752�10�4 6:326�10�3 6:440�10�4 6:923�10�2 9:068�10�4 6:771�10�4�9:87�10�6 �9:13�10�6 �9:15�10�6 �1:84�10�4 �1:27�10�5 �1:15�10�5

1000 5:413�10�4 6:230�10�3 4:592�10�4 6:890�10�2 6:406�10�4 5:547�10�4�8:62�10�6 �2:03�10�5 �4:29�10�6 �2:70�10�4 �6:66�10�6 �1:37�10�5
Table 3.12: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=E10=s +E10 model with � = 1:4 and � = 1:0. The ASE’s are measured in units
of mean service time squared per customer.
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The Markovian queue-length-based predictor, QLm, is a variant of QL that accounts

for customer abandonment by assuming that waiting customers have i.i.d. expo-

nential abandonment times with rate �. It also assumes that service times are i.i.d.

with an exponential distribution. In §3.3, we showed that QLm is the most accurate

predictor, under the MSE criterion, in the GI=M=s + M model. We established

heavy-traffic limits that generated an approximation for the expected MSE of QLm
in the GI=M=s +M model in §3.5.

In practice, the QLm predictor is effective whenever the abandonment-time and

service-time distributions in the actual service system are well modeled by an expo-

nential distribution. The abandonment rate �, which is required for the implemen-

tation of QLm, can be estimated from system data as the ratio of the proportion of

abandoning customers to the average waiting time in the queue; see §5 of Garnett et

al. (2002). The average waiting time in the queue and the proportion of abandoning

customers are fairly standard system data outputs. In the context of call centers, for

example, they can be easily obtained from the Automatic Call Distributor’s (ACD)

data.

But, QLm is not always so good for the more general GI=GI=s + GI model. In

Figures 3.3 and 3.5, we showed that it can be inferior to all other predictors (except

QL) with a non-exponential abandonment-time distribution. Since non-exponential

service-time and abandonment-time distributions are commonly observed in practice,

it is important to propose other queue-length-based delay predictors that effectively

cope with non-exponential distributions. Approximations are needed because direct

mathematical analysis is difficult.

We proposed the simple-refined QLr predictor, which multiplies the QL prediction by

a model-dependent constant, based on fluid approximations in the ED heavy-traffic

limiting regime. Simulation results in §3.6 and the e-companion show that QLr
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performs remarkably well. The QLr predictor is competitive whenever the actual

service system is large and overloaded, i.e., whenever the fluid approximations are

appropriate. The QLr predictor performs significantly better than QLm (and QL)

when the abandonment-time distribution is not nearly exponential; e.g., see Tables

3.3 and 3.4.

Our most promising delay predictor is the new approximation-based predictor, QLa.
Simulation results in §3.6 show that QLa is consistently the most effective predictor

(with the exception of D service). It is a variant of QLm which assumes that aban-

donment times are independent, exponential, with state-dependent abandonment

rates. The QLa predictor coincides with QLm in the setting of the GI=M=s + M
model, and is thus the most accurate for that model, under the MSE criterion. It

also performs remarkably well for non-exponential abandonment-time distributions.

The QLa delay prediction, �QLa(n) in (3.15), requires knowledge of the abandonment-

time hazard-rate function, h. That is convenient from a practical point of view, be-

cause it is relatively easy to estimate hazard rates from system data; see Brown et

al. (2005). It is significant that QLr and QLa require knowledge of the arrival rate,

�, which requires some degree of stationarity. These predictors should be effective

whenever the arrival rate in the actual service system does not vary too rapidly.

Unlike without abandonments, the NI predictor, announcing the deterministic heavy-

traffic fluid limit w of the waiting time, is an effective predictor in the overloaded

GI=GI=s+GI model. It is best possible for D service, but not otherwise. Neverthe-

less, it is remarkably effective, especially when the abandonment-time distribution

has low variability. The NI predictor is a competitive predictor whenever the actual

service system is large and overloaded, and the service and abandonment times are

not highly variable.
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Finally we considered the LES predictor, which is appealing because it only depends

on the history of delays in the system. Intuitively, we should expect that LES will

perform worse than queue-length-based predictors when the queue length and model

parameters are known, because it does not exploit information about system state.

Simulation shows that this is usually true. Nevertheless, the LES predictor is quite

effective in all models considered. In §3.5, we showed that the expected MSE of

LES in the GI=M=s+M model increases with the squared coefficient of variation of

the interarrival times, c2a . The practical significance of this result is that reliability

of LES increases as the variability in the arrival process decreases.



4
Delay-History-Based Predictors with

Time-Varying Arrivals

4.1 Introduction

In this chapter, we study real-time delay predictors in heavily loaded many-server

service systems with time-varying arrival rates. Our main contributions are: (i)

to show that time-varying arrival rates can cause prediction bias for delay-history-

based delay predictors, (ii) to propose new and easily implementable delay predictors,

based on the history of delays in the system, that effectively cope with time-varying

arrivals and general service-time and abandon-time distributions, (iii) to provide

analytical results quantifying the performance of some delay predictors, and (iv) to

describe results of a wide range of simulation experiments evaluating alternative

delay predictors, with time-varying arrivals. This chapter is an edited version of a

paper currently under revision, Ibrahim and Whitt (2010a).

133
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4.1.1 Delay-History-Based Predictors

In this chapter, we examine alternative predictors based on recent customer delay

history in the system. For completeness, we now briefly review those predictors.

As in Armony et al. (2008), a candidate delay predictor based on recent customer

delay history is the delay of the last customer to have entered service, prior to our

customer’s arrival at time t, denoted by LES. That is, letting w be the delay of

the last customer to have entered service, the corresponding LES delay prediction

is: �LES(t; w) � w . Armony et al. (2008) studied delay announcements in many-

server queues with customer abandonment, focusing on customer response to the

announcements, leading to balking and new abandonment behavior. They developed

ways to approximately describe the equilibrium system performance using LES delay

announcements.

Closely related to LES is the elapsed waiting time of the customer at the head of the

line (HOL), assuming that there is at least one customer waiting at the new arrival

epoch. The HOL delay predictor was mentioned as a candidate delay announcement

by Nakibly (2002). For a more detailed discussion of the HOL and LES predictors,

see chapter 2. Experience indicates that the LES and HOL predictors have very

similar performance. In complex systems, the LES delay is more likely to be ob-

servable than the HOL delay, because arrival and service completion times are more

likely to be known than the experience of customers who have not yet completed

their service; e.g., customers may have abandoned and that might not be known.

Nevertheless, here we focus on HOL, because it is easier to analyze. However, we

do so with the understanding that similar results will hold for LES.
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4.1.2 The Case of a Stationary Arrival Process

In chapters 2 and 3, we studied the performance of the LES and HOL delay pre-

dictors in many-server systems, both with and without customer abandonment, by

studying conventional stationary queueing models. In chapter 2, we studied the

performance of HOL in the GI=M=s queueing model and showed that HOL is an

effective predictor in that model. As a frame of reference, we considered the classi-

cal delay predictor based on the queue length, denoted by QL, which multiplies the

queue length plus one times the mean interval between successive service comple-

tions, ignoring customer abandonment. In the GI=M=s model, the QL predictor is

provably the most effective predictor, under the mean squared error (MSE) criterion;

see §2.2. (The argument is reviewed in §4.4 below.) The HOL predictor performs

worse than QL, because it does not exploit queue-length information. Nevertheless,

we showed that the difference in performance need not be too great, particularly

when the arrival process has low variability. Because the model is highly structured,

we were able to obtain analytical results.

In chapter 3, we considered the GI=GI=s + GI model. As one would expect, QL

can overestimate customer delay when there is significant customer abandonment in

the system. We showed that QL performs poorly in a heavily loaded GI=GI=s +GI
model, while HOL remains effective predictor. When customer abandonment is a

serious issue, it is possible to refine the queue-length-based delay predictor by using

the exact expected conditional delay, given the queue length, in the G=M=s + M
model; we denoted this by QLm. However, for non-exponential service-time and

abandonment distributions, the delay-history-based predictors can also outperform

this refined queue-length-based predictor QLm, even when the queue length and the

model are known; e.g., see Figures 3.5 and 3.6 of chapter 2.
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However, we do not mean to suggest that the queue length does not provide useful

information when it is known. Indeed, as shown in chapter 3, our best predictor for

the GI=GI=s + GI model is an approximation-based predictor, referred to as QLa,
which exploits the queue length as well as model parameters; we also will make use

of QLa here for the M(t)=GI=s + GI model in §4.8.

4.1.3 Time-Varying Arrival Rates

In this chapter, we study the performance of the HOL predictor with time-varying

arrival rates. We do so primarily because arrival rates typically vary significantly over

time in real-life service systems.

The HOL predictor can perform poorly when the delays vary systematically over time,

as can occur when there are alternating periods of significant overload and underload.

Then the delay of a new arrival may not be like the HOL delay. To demonstrate

potential problems with the HOL predictor, we plot simulation sample paths of

HOL delay predictions given, and actual delays observed, as a function of time, in

simulation runs from two different heavily-loaded many-server systems. In Figure

4.1, we consider the stationary M=M=100 model with traffic intensity � = 0:95 and

mean service time 5 minutes; in Figure 4.2, we consider the M(t)=M=100 model

with sinusoidal arrival rates, again with traffic intensity � = 0:95, but now defined as

the long-run average, and mean service time 5 minutes. We consider a daily cycle,

so that there is one peak during the day. We let the relative amplitude be � = 0:5.
(The ratio of the peak arrival rate to the average arrival rate is 1+�.) We measure

time and, thus, the delays in units of mean service times. The overall plotted time

interval of length 500 mean service times is slightly less than two days, so we see

two peaks.
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For Figure 2, we deliberately chose an extreme case in which the system alternates

between extreme overload and underload, while the number of servers remains fixed.

In that setting, the maximum delays themselves are about 40 mean service times

or 200 minutes, about 60 times greater than in the stationary environment. Delay

prediction tends to be especially important with such large delays. Figure 4.2 shows

that, with time-varying arrival rates, the HOL curve is clearly shifted to the right

of the actual-delay curve; i.e., there is a time lag between the HOL predictions and

the actual delays observed; leading to big errors.

Figure 4.2 also shows a third plot, the plot of a modified HOL predictor, denoted

by HOLm, which we develop in §4.4. Clearly, it eliminates the time lag; visually the

HOLm plot falls on top of the actual delays. The ratio of the average squared errors

ASE(HOL)/ASE(HOLm), defined in §4.3 below, is about 95 in Figure 2. (If we

would reduce the relative amplitude from 0.5 to 0.1, then the ratio would be only

1.3; it then requires careful analysis to see the improvement provided by HOLm over

HOL; see Figure 4.4 for the plot.)

In this chapter, we not only show that HOL may not be an effective predictor with

time-varying arrivals, particularly when the system alternates between phases of

underload and overload, but we also develop refinements of the HOL predictor that

remain effective for time-varying arrival rates. Through analysis and simulation, we

show that these new predictors perform remarkably well with time-varying arrival

rates, far better than HOL.

However, the improved performance of the refined HOL predictors comes at the

expense of exploiting more information about the system, such as the arrival rate,

the number of service times and the mean service time. That requirement greatly

reduces the advantage over queue-length-based delay predictors. Indeed, our strat-

egy for obtaining the refined HOL predictors involves two steps: (i) representing
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Figure 4.2: Sample paths of actual delays
and delay predictions using HOL and HOLm
with a sinusoidal arrival rate and � = 0:5

or approximating the expected conditional delay given the queue length, and (ii)

estimating the queue length, given the observed HOL delay and the model param-

eters. Hence, the refined HOL predictors are valuable only when the queue length

is not known. However, such cases are not uncommon, as in Web chat and the

ticket queues, when we directly observe arrivals and service completions, but not

the queue, because we do not observe the customer abandonments.

Because our refined predictors exploit more information about the system, we also

investigate (i) how our refined predictors perform if the extra information is known

imperfectly, because it too must be estimated, and (ii) how this additional informa-

tion can be estimated in real time. We propose estimation procedures for alternative

system parameters, and quantify the estimation error resulting from those proce-

dures. These additional experiments show that the refined predictors can be useful

in practice.
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4.1.4 Organization

The rest of this chapter is organized as follows: In §4.2, we describe the queueing

models considered. In §4.3, we describe measures quantifying the performance of

our candidate delay predictors. In §4.4, we introduce a new delay predictor for the

M(t)=GI=s model. In §4.5, we provide analytical results for the performance of this

predictor in the M(t)=M=s model. In §4.6, we present simulation results showing

that it is effective in the M(t)=GI=s model. In §4.7, we propose ways of obtaining

the additional system information required for implementing the new delay predictor

of §4.4. In §4.8, we develop a new delay predictor for the M(t)=GI=s+GI model. In

§4.9, we present simulation results showing that it is effective. We make concluding

remarks in §4.10. Additional simulation results with time-varying arrival rates appear

in the appendix.
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4.2 The Modeling Framework

We consider many-server queueing models with time-varying arrival rates, both with

and without customer abandonment. We model the arrival process as a nonhomo-

geneous Poisson process, which is the accepted model for capturing time-varying

arrivals. It is completely characterized by its deterministic arrival-rate function

� � f�(u) : �1 < u <1g. There is statistical evidence suggesting that a nonho-

mogeneous Poisson process is a good fit for the arrival process to a call center; see

Brown et al. (2005). We adopt this model for arrivals, although we recognize its

shortcomings. For example, this model does not reproduce an essential feature of

call center arrivals, which is the over-dispersion of the number of arrivals relative to

the Poisson distribution (i.e., the variance is larger than the mean); see Avramidis et

al. (2004). Moreover, the arrival rate in a real-life system is often not known with

certainty. Therefore, it could be assumed to be a random variable; see Jongbloed

and Koole (2001). It is natural, however, to begin an investigation in a relatively

tractable setting, for which we are able to obtain analytical results. Our results

provide useful background for similar studies in even more complicated settings.

In §§4.4-4.6, we consider the M(t)=GI=s model, which has a nonhomogeneous

Poisson arrival process, i.i.d. service times distributed as a random variable S with

a general distribution, having mean E[S] = ��1 and no customer abandonment.

Motivated by large service systems, we are primarily interested in the case of large

s, which we take to be fixed. It is possible to choose appropriate time-varying staffing

(making s a function of time) so that delays are stabilized at low levels; e.g., see

Green et al. (2007). However, in practice there often is not adequate flexibility

in setting staffing levels. Our fixed staffing assumption captures the spirit of such

situations. We leave to future research the important extension to time-varying
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staffing levels. In chapter 5 we consider the case of time-varying staffing.

Our delay predictors apply to arbitrary arrival rate functions, but to analyze the per-

formance of these predictors we restrict attention to periodic arrival rate functions,

under which the queueing system has a dynamic steady state, provided that the

average arrival rate, denoted by ��, is strictly less than the maximum possible service

rate, s�; e.g., see Heyman and Whitt (1984). For our analysis, both analytically and

by simulation, we further restrict attention to the special case of sinusoidal arrival

rates. That is commonly done in studies of queues with time-varying arrivals; e.g.,

see Green et al. (2007) and references therein. Sinusoidal arrival rates capture the

spirit of daily cycles.

In §4.8 and §4.9 we consider the M(t)=GI=s + GI model, which adds customer

abandonment. The abandonment times are i.i.d. with mean ��1 and a general

cumulative distribution function (cdf) F . As in chapter 3, we see that the aban-

donment distribution has a significant impact.

4.3 Performance Measures for the Delay Predictors

For completeness, we now indicate how we evaluate the performance of our can-

didate delay predictors. Once more, we use computer simulation to do the actual

estimation. In our simulation experiments, we quantify the performance of a delay

predictor by computing the average squared error (ASE), defined by:

ASE � 1
k

k∑
i=1 (wi � pi)2 ; (4.1)

where wi > 0 is the potential waiting time of delayed customer i , pi is the delay

prediction given to customer i , and k is the number of customers in our sample.
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The potential waiting time of a delayed customer is the waiting time he would

experience if he had infinite patience. In our simulation experiments, we measure wi
for both served and abandoning customers. For abandoning customers, we compute

the delay experienced, had the customer not abandoned, by keeping him “virtually”

in queue until he would have begun service. Such a customer does not affect the

waiting time of any other customer in queue.

As discussed in chapters 2 and 3, the ASE approximates the expected mean squared

error (MSE) for a system in steady state with a constant arrival rate, but the sit-

uation is more complicated with time-varying arrivals. We regard ASE as directly

meaningful, but now we indicate how it relates to the MSE. Let WHOL(t; w) repre-

sent a random variable with the conditional distribution of the potential delay of an

arriving customer, given that this customer must wait before starting service, and

given that the elapsed delay of the customer at the head of the line at the time

of his arrival, t, is equal to w . Let �HOL(t; w) be some given single-number delay

prediction which is based on the HOL delay, w , and the time of arrival, t. Then,

the MSE of the corresponding delay predictor is given by:

MSE(�HOL(t; w)) � E[(WHOL(t; w)� �HOL(t; w))2] ; (4.2)

which is a function of w and t. In order to get the overall MSE of HOL at time t,
we average with respect to the distribution of the unconditional distribution of the

HOL waiting time at time t, WHOL(t), i.e.,

MSE(t) � E[MSE(�HOL(t;WHOL(t)))]: (4.3)

Finally, in order to relate the ASE in (4.1) to the MSE, we need to average MSE(t)
defined in (4.3) appropriately over time, but since the ASE represents a customer
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average instead of a time average, we need to use a weighted time average of the

time-dependent MSE in (4.2) in order to relate it to the ASE. In particular, if T is

the cycle length, then

ASE �
∫ T0 �(u)MSE(u)du∫ T0 �(u)du ; (4.4)

where MSE(t) is defined in (4.3); for supporting theory see the appendix of Massey

and Whitt (1994). The right-hand side of (4.4) is the weighted MSE (WMSE).

As in chapters 2 and 3, we also quantify the performance of a delay predictor by

computing the root relative average squared error (RRASE), defined by

RRASE �
pASE

(1=k)∑ki=1 pi ; (4.5)

using the same notation as in (4.1). The denominator in (4.5) is the average

potential waiting time of customers who must wait.

4.4 Delay Predictors for the M(t)=GI=s Model

In this section, we propose a modified HOL-based delay predictor, HOLm, for

the M(t)=GI=s model. Our idea is to use the refined predictor �rHOL(t; w) �
E[WHOL(t; w)] instead of the HOL predictor �HOL(t; w) � w , because the mean

necessarily minimizes the MSE based on this information. However, this mean is

difficult to compute, so we propose an approximation. We approximate the mean

in the given M(t)=GI=s model by its exact value in the corresponding M(t)=M=s
model, with exponential service time having the given mean E[S].
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For the M(t)=M=s model, we have the representation:

WHOL(t; w) � A(t)�A(t�w)+2∑
i=1 Si=s ; (4.6)

where fA(t) : t � 0g denotes the arrival (counting) process. We have division by s
in (4.6) because the times between successive service completions, when all servers

are busy, are i.i.d. random variables distributed as the minimum of s exponential

random variables, each with rate �, which makes the minimum exponential with

rate s�. The random variable A(t)�A(t�w) has a Poisson distribution with mean∫ tt�w �(u)du. Since WHOL(t; w) in (4.6) is a random sum of i.i.d. random variables,

where A(t)�A(t�w) is independent of the summands Si=s, we can easily compute

this mean. Hence our refined HOL predictor for the M(t)=GI=s model is this mean

�HOLr (t; w) � E[WHOL;M(t)=M=s(t; w)] = 1
s�
(
2 +

∫ t
t�w �(u)du

)
: (4.7)

In general, with a non-exponential service-time distribution, �HOLr (t; w) in (4.7) does

not equal E[WHOL(t; w)], because many of the remaining service times at time t are

residual service times for service times begun prior to time t. Consequently, these

service times have a different distribution than the original service time. However,

we can make stochastic comparisons. A cumulative distribution function (cdf) G of

a nonnegative random variable is said to be new better (worse) than used - NBU

(NWU) - if Gct (x) � Gc(t + x)=Gc(t) � Gc(x) for all t � 0 and x � 0, where

Gc(x) � 1 � G(x); see p. 159 of Barlow and Proschan (1975). In the parlance of

survival analysis, a cdf is NBU (NWU) if the probability of surviving for an additional

x time units, given survival up to time t, decreases (increases) with t.
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Proposition 1 If the service-time cdf is NBU (NWU), then

�HOLr (t; w) � (�)E[WHOL(t; w)]:

Proof. The NBU and NWU condition means that the residual service times are

stochastically ordered compared to the original service times. Given the elapsed

times, the remaining service times are mutually independent. The minimum (the

time until the next departure) is thus stochastically ordered compared to the mini-

mum of mutually independent original service-time distributions. The random vari-

able WHOL(t; w) is the sum of several of those intervals between successive depar-

tures. Even though those intervals may be dependent, the mean of the sum is the

sum of the means. Hence the means are ordered, as claimed.

More importantly, simulation shows that HOLm provides a good approximation even

when the service-time distribution is not nearly exponential; see §4.6.

We conclude this section by reviewing the QL predictor, previously considered in

chapters 2 and 3, using slightly different notation to account for a nonstationary

arrival process. Let WQ(t; n) represent a random variable with the conditional dis-

tribution of the potential delay of an arriving customer, given that this customer

must wait before starting service, and given that the queue length seen upon arrival,

at time t, is equal to n. Again, the QL predictor is obtained by using the exact

expected value E[WQ(t; n)] for the corresponding M(t)=M=s model with the same

mean service time.

In the M(t)=M=s model, WQ(t; n) is the sum of n + 1 i.i.d. exponential random

variables, each with rate s�. The QL prediction given to a customer who finds n
other customers in queue upon arrival is: �QL(t; n) � E[WQ(t; n)] = (n + 1)=s�,

which depends on t only through n, which is directly observable. The optimal delay
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predictor, using the MSE criterion, is the one announcing the mean, E[WQ(t; n)],
conditional on the number of customers, n, seen in line at time t. That is why

the QL predictor is the optimal delay predictor, under the MSE criterion, in the

M(t)=M=s model.

By essentially the same reasoning as for Proposition 1, we can obtain bounds for

Proposition 2 If the service-time cdf is NBU (NWU), then

�QL(t; n) � (�)E[WQ(t; n)]:

Fortunately, again simulation shows that QL remains effective in the M(t)=GI=s
model, even when the service-time distribution is not nearly exponential; see §4.6.

For the M(t)=M=s model, we obtain analytical results quantifying the difference in

performance between QL and HOLm in the next section.

4.5 Analytical Expressions for the M(t)=M=s Model

The QL predictor has the desirable property that the prediction gets relatively more

accurate as the observed queue length n increases. For the conditional waiting time

at time t based on an observed queue length of n, we have the representation

WQ(t; n) �
n+1∑
i=1 Si=s : (4.8)

The expectation, variance, and squared coefficient of variation (SCV, equal to the

variance divided by the square of the mean) of WQ(t; n) are given by:
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E[WQ(t; n)] = n + 1
s� ; V ar [WQ(t; n)] = n + 1

s2�2 ;
and c2WQ(t;n) � V ar [WQ(t; n)](E[WQ(t; n)])2 = 1

n + 1 ; (4.9)

so that c2WQ(t;n) ! 0 as n !1.

To treat HOLm, we use the representation in (4.6), which allows us to characterize

the probability distribution of the random variable WHOL(t; w), in the M(t)=M=s
model.

Proposition 3 For the M(t)=M=s model,

V ar [WHOL(t; w)] = 2
s2�2 (1 +

∫ t
t�w �(u)du) ; (4.10)

which, combined with (4.7), yields

c2WHOL(t;w) = V ar [WHOL(t; w)]
(E[WHOL(t; w)])2 = 2� 1 + ∫ tt�w �(u)du(2 + ∫ tt�w �(u)du)2 : (4.11)

Proof. Formula (4.10) follows from the conditional variance formula, e.g., p.51 of

Ross (1996). Formula (4.11) immediately follows from (4.7) and (4.10). .

Since �HOLr (t; w) � E[WHOL(t; w)] and �QL(t; n) � E[WQ(t; n)], we can compare

the performance of HOLm and QL by comparing the respective SCV’s in (4.9) and

(4.11). (When the delay prediction equals the conditional mean, the MSE coincides

with the variance.)

To obtain further results, we consider a sinusoidal arrival-rate function

�(u) = ��+ � sin(
u) � ��+ ��� sin(2�u=� ); for �1 < u <1 ; (4.12)
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where �� is the average arrival rate, � is the relative amplitude and � is the cycle

length. (We define � � ��� and 
 � 2�=� .) Given the cycle length, � , we can

deduce the place where any time u falls within the cycle, in dynamic steady state.

Henceforth, we focus solely on the interval 0 � u � � , which describes a full cycle.

With sinusoidal arrival rates, we obtain analytical results comparing the performance

of the QL and HOLm predictors. We determine the limit of the ratio of the SCV’s

as n !1. Formula (4.13) below coincides with formula (2.37) of chapter 2 for the

stationary GI=M=s model. As before, the condition n !1 arises naturally in heavy

traffic, either with fixed s or as s ! 1; e.g., see Garnett et al. (2002). (When

s !1 along with the arrival rate, the queue length is of order s and
ps in the ED

and QED regimes.) Recall that � � ��=s�:

Proposition 4 For the M(t)=M=s model with sinusoidal arrival rates,

c2WHOL(t;w)c2WQ(n) ! 2
� as n !1 ; (4.13)

for all t, provided that w=n ! 1=s�.

Proof. Using Equations (4.7), (4.10), (4.11) and (4.12), we get the following

expressions for the mean, variance, and SCV of WHOL(t; w), in the M(t)=M=s
model with sinusoidal arrivals:

E[WHOL(t; w)] = 2 + ��w + (�=
)(cos(
t � 
w)� cos(
t))
s� ; (4.14)

and,

V ar [WHOL(t; w)] = 2� 1 + ��w + (�=
)(cos(
t � 
w)� cos(
t)))
s2�2 ; (4.15)
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which yields

c2WHOL(t;w) = V ar [WHOL(t; w)]
(E[WHOL(t; w)])2 = 2� 1 + ��w + (�=
)(cos(
t � 
w)� cos(
t))

[2 + ��w + (�=
)(cos(
t � 
w)� cos(
t))]2 ;
(4.16)

for 0 � t � � . Using (4.16), and recalling that �1 � cos(u) � 1 for all u, we

obtain the following bounds for the SCV of WHOL(t; w):
2 + 2��w � 4�=

(2 + ��w + 2�=
)2 � c2WHOL(t;w) � 2 + 2��w + 4�=


(2 + ��w � 2�=
)2 : (4.17)

Let W (t) be the potential waiting time at time t, the time that an arrival at t would

have to wait before beginning service. Since

W (t) = Q(t)+1∑
i=1 Si=s ; (4.18)

where Q(t) is the number of customers waiting in queue upon arrival at t, the law

of large numbers implies that W (t)=Q(t) ! 1=s� as Q(t) ! 1. Thus, when

Q(t) is large, we have W (t) � Q(t)=s�. Assuming that n in (4.9) is large with

w = n=s�+ o(n) as n !1, where o(n) denotes a quantity that is asymptotically

negligible when divided by n, and combining that with (4.17), for large n we get

(2 + 2�(n + o(n))� 4�=
)(n + 1)
(2 + �(n + o(n)) + 2�=
)2 � c2WHOL(t;w)c2WQ(n) � (2 + 2�(n + o(n)) + 4�
)(n + 1)

(2 + �(n + o(n))� 2�=
)2 ;
(4.19)

for all t. By a sandwiching argument, (4.19) yields (4.13) as n !1.
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4.6 Simulations Experiments for the M(t)=GI=s Model

In this section, we present simulation results for the M(t)=GI=s model, quanti-

fying the performance of QL, HOL, and HOLm with sinusoidal arrival rates. For

the service-time distribution, we consider M (exponential), D (deterministic), and

LN(1; 4) (lognormal with mean equal to 1 and variance equal to 4). The LN(1; 4)
(D) distribution exhibits high (low) variability, relative to M. We consider a log-

normal distribution because there is statistical evidence suggesting a good fit of the

service-time distribution to the lognormal distribution in call centers; see Brown et.

al (2005).

Description of the Experiments. We fix the number of servers, s = 100, because

we are interested in large service systems. We consider nonhomogeneous Poisson

arrival processes with the sinusoidal arrival rate functions in (4.12). We vary �� to

get alternative values of �, for fixed s. We consider values of � ranging from 0.90 to

0.98. These values of � are chosen to let our systems alternate between periods of

overload and underload. We consider two values of the relative amplitude: � = 0:1,
and � = 0:5. Simulation point and 95% confidence interval estimates are based

on 10 independent replications of 5 million events each, where an event is either an

arrival or a service completion. That is, each simulation run terminates when the

sum of the number of arrivals and the number of service completions is equal to 5
the appendix for more.

The parameters of the arrival-rate intensity function, �(u) in (4.12), should be

interpreted relative to the mean service time, E[S]. As in §4.1.3, we measure time

in units of mean service times; hence � = 1. Then, we refer to 
 in (4.12) as the

relative frequency. Table 4.1 displays values of the relative frequency as a function of

E[S], assuming a daily cycle. For interpretation, we also will specify the associated
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Relative Frequency Mean Service Time
 E[S]
0.0220 5 minutes
0.0436 10 minutes
0.131 30 minutes
0.262 1 hour
1.571 6 hours
3.14 12 hours
6.28 24 hours
12.6 48 hours

Table 4.1: The relative frequency, 
, as a function of the mean service time E[S] for a daily cycle.
The relative frequency is the frequency computed with measuring units so that E[S] = 1.

mean service time in minutes, given a daily cycle.

Here, we consider two different values of 
. First, we consider 
 = 0:131, which

corresponds to E[S] = 30 minutes, assuming a daily cycle. This choice of E[S]
could be used to describe the experience of waiting customers in a call center, for

example. Second, we consider 
 = 1:57, which corresponds to E[S] = 6 hours.

This choice of E[S] could be used to describe the experience of waiting patients

in a crowded hospital emergency department (ED). With E[S] = 30 minutes and

� = 0:1 (E[S] = 6 hours and � = 0:5), and daily cycles, the arrival rate varies

relatively slowly (rapidly) with respect to the service times.

In Table 4.2, we present simulation (point and 95% confidence interval estimates)

quantifying the performance of QL, HOLm, and HOL in the M(t)=GI=s model with

M, LN(1; 4), and D service-time distributions. We discuss these results next.

Comparing HOLm and HOL.

Table 4.2 shows that, for � = 0:1 and E[S] = 30 minutes, HOLm performs better

than HOL, particularly for high values of �. We get consistent results with M,
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LN(1; 4), and D service times: ASE(HOL)/ASE(HOLm) is roughly equal to 1 for

� = 0:9, and roughly equal to 1:4 for � = 0:98. The case with high � corresponds

to extreme fluctuations between phases of underload and overload, in which case

HOL performs relatively poorly.

With � = 0:5, and E[S] = 6 hours, the difference in performance between HOL

and HOLm is significant, for all � considered. For example, with D service times,

ASE(HOL)/ASE(HOLm) ranges from about 1.8 for � = 0:9 to about 2.4 for � =
0:98. With M service times, ASE(HOL)/ASE(HOLm) ranges from about 2.1 for

� = 0:9 to about 4.8 for � = 0:98. The HOLm predictor is also relatively more

accurate than HOL. For example, with LN(1; 4) service times, RRASE(HOLm)

ranges from about 27% for � = 0:9 to about 15% for � = 0:98. In this case,

RRASE(HOL) ranges from about 38% for � = 0:9 to about 20% for � = 0:98.
Comparing HOLm and QL.

In the M(t)=M=s model, QL is provably the optimal predictor, under the MSE

criterion; see §4.4. With � = 0:1, E[S] = 30 minutes, and M service times,

Table 4.2 shows that RRASE(QL) ranges from about 21% for � = 0:9 to about

10% for � = 0:98. With non-exponential service times, QL remains the most

effective predictor, under the MSE criterion. It is relatively accurate, in all models

considered. For example, with � = 0:5, E[S] = 6 hours, and LN(1; 4) service times,

RRASE(QL) ranges from about 20% for � = 0:9 to about 12% for � = 0:98.
Consistent with §4.5, the approximation for the ratio of the SCV’s in (4.13) provides

a remarkably accurate approximation for the ratio of the ASE’s with M service

times, particularly for high values of �, as we would expect. (The distortion caused

by the customer average in (4.4) is evidently minor.) For example, with E[S] = 30
minutes and � = 0:1, Table 4.2 shows that the relative error between simulation
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point estimates for ASE(HOLm)/ASE(QL) and numerical values given by (4.13), is

less than 3% for � = 0:98.
With LN(1; 4) service times, E[S] = 30 minutes, and � = 0:1, Table 4.2 shows

that ASE(HOLm)/ASE(QL) ranges from about 1.7 for � = 0:9 to about 1.5 for

� = 0:98, which is less than predicted by (4.13). Similarly, with D service times,

E[S] = 6 hours, and � = 0:5, Table 4.2 shows that ASE(HOLm)/ASE(QL) is

approximately equal to 1.5 for all �.

4.7 Estimating the Required Additional Information

for HOLm
We have shown, both analytically and using simulation, that the HOL predictor can

perform poorly when the arrival rate varies considerably over time while the staffing is

fixed. We showed that the new refined HOL predictor, HOLm, performs remarkably

better than HOL in the M(t)=GI=s queueing model, with time-varying arrival rates;

see §4.6.

However, the statistical accuracy of HOLm is obtained at the expense of ease of

implementation. In addition to the HOL delay, w , HOLm depends on the arrival-

rate function, �(t), and the mean time between successive service completions

(which equals 1=s� with s simultaneously busy servers and i.i.d. exponential service

times with rate �); see (4.7). In practice, the implementation of HOLm requires

knowledge of those system parameters, which may require estimation from data.

Any estimation procedure inevitably produces some estimation error, which would

affect the performance of HOLm.

In this section, we propose estimation procedures for the arrival rate and the mean
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M(t)=M=100, � = 0:1, E[S] = 30 min M(t)=M=100, � = 0:5, E[S] = 6 hrs� QL HOLm HOL QL HOLm HOL
0.9 2:26 4:29 4:61 2:24 4:27 9:01�0:051 �0:088 �0:098 �0:023 �0:033 �0:15

0.93 3:77 7:29 8:04 2:83 5:45 14:1�0:10 �0:21 �0:26 �0:029 �0:063 �0:25
0.95 5:08 10:1 11:7 3:49 6:82 21:4�0:072 �0:15 �0:20 �0:033 �0:073 �0:28
0.97 7:16 14:1 17:5 4:82 9:46 39:0�0:098 �0:20 �0:24 �0:12 �0:22 �1:5
0.98 9:14 18:0 23:9 6:77 13:3 63:3�0:30 �0:59 �1:0 �0:32 �0:62 �3:9
M(t)=LN(1; 4)=100, � = 0:1, E[S] = 30 min M(t)=LN(1; 4)=100, � = 0:5, E[S] = 6 hrs� QL HOLm HOL QL HOLm HOL

0.9 4:36 7:30 7:78 2:08 3:60 7:79�0:25 �0:34 �0:36 �0:13 �0:19 �0:33
0.93 6:89 11:3 12:8 3:48 5:90 14:0�0:15 �0:34 �0:34 �0:18 �0:27 �0:49
0.95 9:82 15:9 19:0 5:70 9:52 22:5�0:28 �0:42 �0:56 �0:14 �0:22 �0:38
0.97 17:2 27:0 35:1 9:92 15:9 34:2�0:81 �1:3 �2:1 �0:60 �0:89 �1:1
0.98 23:2 35:8 48:9 20:1 31:0 52:1�0:94 �1:4 �2:4 �2:2 �3:3 �3:2

M(t)=D=100, � = 0:1, E[S] = 30 min M(t)=D=100, � = 0:5, E[S] = 6 hrs� QL HOLm HOL QL HOLm HOL
0.9 0:972 2:31 2:47 3:02 4:14 7:35�0:025 �0:034 �0:036 �0:023 �0:039 �0:054

0.93 1:23 3:84 4:18 3:71 5:01 8:91�0:024 �0:063 �0:078 �0:027 �0:026 �0:045
0.95 1:31 5:19 6:01 4:33 5:84 10:5�0:027 �0:041 �0:041 �0:038 �0:051 �0:068
0.97 1:35 7:26 9:29 5:41 7:54 15:5�0:026 �0:065 �0:038 �0:086 �0:075 �0:14
0.98 1:34 8:29 11:3 6:01 8:84 21:1�0:042 �0:057 �0:069 �0:075 �0:076 �0:49

Table 4.2: A comparison of the efficiency of QL, HOLm, and HOL in the M(t)=GI=100 model,
as a function of the traffic intensity, �. Point and 95% confidence interval estimates of the average
squared error (ASE) are shown. Estimated ASE’s are in units of 10�3.
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time between successive service completions in real-life service systems. Further, we

quantify the estimation error resulting from those procedures, and its impact on the

performance of HOLm; see Table 4.3. We show that the HOLm predictor remains

effective even with imperfect information about system parameters.

To prediction the arrival-rate function, �(t), we propose relying on forecasts relying

on data from previous days, and observations over the current day, up to date. For

�HOLm(t; w) in (4.7), we need estimates of the arrival-rate function over the interval

[t � w; t]. Here, we assume that the arrival process is a nonhomogeneous Poisson

process with an integrable arrival-rate function. Since we observe customer arrival

times, but not the arrival rates, we need to forecast future rates based on historical

call volumes. For ways of forecasting future arrival rates, we refer the reader to

recent work on forecasting arrival rates to service systems such as call centers.

For one example, Shen and Huang (2008b) propose an approach to forecast the

time series of an inhomogeneous Poisson process by first building a factor model

for the arrival rates, and then forecasting the time series of factor scores. As

another example, Aldor-Noiman et al. (2009) propose an arrival count model which

is based on a mixed Poisson process approach incorporating day-of-week, periodic,

and exogenous effects. For other related work, see Avramidis et al. (2004), Brown

et al. (2005), and Shen and Huang (2008a).

We might also rely on historical data from previous days to prediction the mean

time between successive service completions, combined with real-time data over the

recent past. However, we consider a procedure based on real-time estimation alone,

and investigate its feasibility. As a real-time predictor, we propose computing the

sample average, m̂, of (recent) time intervals between successive service comple-

tions in the system. In doing so, as an approximation, we assume (i) that all servers

are simultaneously busy, and (ii) that the times between successive service comple-
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tions are i.i.d. (Since we are interested in systems which are heavily loaded, the

assumption of busy servers is not too restrictive. The second assumption is exact

for exponential service times, but not more generally.) Given that assumption, we

can apply elementary statistics to compute the sample size, n(x), needed to obtain

a desired margin of relative error, x , at a given confidence level. (Specifically, the

half width of a confidence interval is a function of the number of observations used.

Therefore, we can obtain a desired margin of relative error by changing the number

of observations, thus leading to a different half width.) The error, x , measures the

relative error between the actual mean and the sample mean.

To illustrate, consider theM(t)=M=100 model with exponential service times. Then,

n(0:05) � 1540 at the 95% confidence level. That is, the sample size required to

get a relative error margin of x = 0:05 is roughly equal to 1540, at the 95%
confidence level. It is important to get a sense of how long it would take to get

a total of 1540 service completions in the system. For example. suppose that the

mean service time is equal to 5 minutes. The length of the estimation interval is

roughly equal to 77 minutes. Indeed, each service request requires, on average, 5

minutes to process, and there are 100 servers working in parallel. This numerical

example illustrates that the computational burden of obtaining estimates of system

parameters that are within a relative error margin of x = 0:05 of their actual values

is not unreasonable.

There remains to study the effect of the estimation error, x , on the performance

of the HOLm predictor. To that end, we consider modified HOLm delay predictors,

denoted by HOLm(x), depending on the relative error, x , in estimating 1=s�. That

is, the HOLm(x) predictors use the following delay prediction:
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�HOLm(t; x; w) = 1 + x
s� (2 +

∫ t
t�w �(u)du) ;

where �1 < x < 1. We study the performance of HOLm(x) for alternative small

values of x . Clearly, the performance of HOLm(x) should degrade as jx j increases,

but we would like to know by how much.

In Table 4.3, we study the performance of HOLm(x) as a function of the traffic in-

tensity, �, in the M(t)=M=100 queueing model, with � = 0:5 and E[S] = 5 minutes.

We also include the sample sizes needed to obtain system parameter estimates within

that error margin and, in parentheses, the corresponding required length of the es-

timation interval (under our model assumptions). We consider values of x between

-0.1 and 0.1. For these values, we find that HOLm still performs considerably better

than HOL. For example, for x = 0:05, the ratio ASE(HOL)/ASE(HOLm(x)) ranges

from about 14 to about 23 for values of � between 0:9 and 0:98. For x = �0:05,
ASE(HOL)/ASE(HOLm(x)) ranges from about 16 to about 27 for � between 0:9
and 0:98. That is, simulation shows that HOLm remains remarkably more effec-

tive than HOL, even with imperfect information about system parameters, as would

commonly occur in practice.

Additional simulation results are presented in the appendix. There, we consider

lognormal and deterministic service times, and alternative arrival-rate parameters.

We find that HOLm(x) usually performs better than HOL when the relative error,

x , is at most 5%. For example, in the M(t)=H2=100 model with � = 0:5, E[S] =
6 hours, and x = �0:05, the ratio ASE(HOL)/ASE(HOLm(x)) ranges from 2.4 to

2.8.
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M(t)=M=100, � = 0:5, E[S] = 5 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 4:40 1:24 0:449 0:302 0:417 1:02 2:96 0:148 16:92�5:3�10�2 �2:53�10�2 �1:21�10�2 �6:4�10�3 �9:3�10�3 �2:1�10�2 �4:1�10�2 �6:8�10�3 �1:4�10�1
0.93 6:01 1:63 0:548 0:351 0:520 1:37 4:09 0:177 28.0�5:0�10�2 �2:9�10�2 �1:5�10�2 �8:8�10�3 �1:5�10�2 �3:4�10�2 �7:2�10�2 �6:0�10�3 �0:27
0.95 7:29 1.96 0.645 0.410 0.620 1.66 4.98 0.202 38.06�9:3�10�2 �3:7�10�2 �1:7�10�2 �1:8�10�2 �2:8�10�2 �4:5�10�2 �7:1�10�2 �7:4�10�3 �0:32
0.97 8:48 2:21 0:688 0:431 0.702 1.97 5.96 0.216 49.8�0:12 �5:5�10�2 �2:4�10�2 �1:4�10�2 �2:7�10�2 �5:7�10�2 �0:11 �6:6�10�3 �0:43
0.98 9.21 2.40 0.741 0.454 0.737 2.09 6.39 0.226 56.3�8:2�10�2 �3:5�10�2 �2:3�10�2 �2:3�10�2 �3:0�10�2 �4:4�10�2 �7:4�10�2 �6:9�10�3 0.40

n(x) 385 1537 9604 9604 1537 385
Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table 4.3: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �, and
alternative x , in the M(t)=M=100 queueing model with � = 0:5 and E[S] = 5 minutes. Sample
sizes needed and length of estimation intervals required are also included.

4.8 Delay Predictors for the M(t)=GI=s + GI Model

In this section, we propose a new delay predictor for the M(t)=GI=s + GI model,

based on the HOL delay observed upon arrival to the system. In §4.9 we show

that this new predictor, HOLa, performs remarkably well. In particular, HOLa effec-

tively copes with both time-varying arrivals and non-exponential abandonment-time

distributions. As a frame of reference, we also consider a classical delay predictor

based on the queue-length seen upon arrival to the system. This predictor, QLm,

was previously considered in chapter 3. For completeness, we now provide a short

description of QLm.

The Markovian Queue-Length-Based Delay Predictor (QLm).

The QLm predictor approximates the expected conditional delay, given the queue

length, in the M(t)=GI=s + GI model by the expected conditional delay, given the

queue length, in the correspondingM(t)=M=s+M model with the same service-time
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and abandon-time means. For the M(t)=M=s +M model, we have the representa-

tion:

WQ(t; n) �
n∑
i=0 Yi ; (4.20)

where the Yi ’s are independent random variables with Yi being the minimum of s
exponential random variables with rate � (corresponding to the remaining service

times of customers in service) and i exponential random variables with rate � (cor-

responding to the abandonment times of the remaining customers waiting in line).

That is, Yi is exponential with rate s�+ i�. Therefore,

E[WQ(t; n)] =
n∑
i=0 E[Yi ] =

n∑
i=0

1
s�+ i� : (4.21)

The QLm predictor given to a customer who finds n customers in queue upon arrival

is �QLm(t; n) � E[WQ(t; n)]. Under the MSE criterion, QLm is the best possible

predictor in the M(t)=M=s +M model, but we found that it is not always so good

for the more general M(t)=GI=s +GI model; see §4.9. Thus, there is a need to go

beyond QLm, in practice.

The Approximation-Based QL-Based Delay Predictor (QLa).
In chapter 3, we introduced an approximation-based queue-length-based delay pre-

dictor, QLa, which exploits established approximations for performance measures

in the M=GI=s + GI model, developed by Whitt (2005b). We showed that QLa
consistently outperforms all other predictors considered in the GI=GI=s+GI model,

with a stationary arrival process. Here, we propose an analog of QLa that uses

the observed HOL delay, and effectively copes with time-varying arrival rates. For

completeness, we begin by briefly reviewing the QLa predictor for the GI=GI=s+GI
model.
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The QLa predictor approximates the GI=GI=s + GI model by the corresponding

GI=M=s + M(n) model, with state-dependent Markovian abandonment rates. In

particular, we assume that a customer who is jth from the end of the queue has an

exponential abandonment time with rate  j , where  j is given by

 j � h(j=�); 1 � j � k ; (4.22)

k is the current queue length, � is the arrival rate (assumed constant), and h is

the abandonment-time hazard-rate function, defined as h(t) � f (t)=(1 � F (t)),
t � 0, where f is the corresponding density function (assumed to exist). Here

is how (4.22) is derived: If we knew that a given customer had been waiting for

time t, then the rate of abandonment for that customer, at that time, would be

h(t). We therefore need to prediction the elapsed waiting time of that customer,

given the available state information. Assuming that abandonments are relatively

rare compared to service completions, it is reasonable to act as if there have been

j arrival events since our customer arrived. Since a simple rough prediction for the

time between successive arrival events is the reciprocal of the arrival rate, 1=�, the

elapsed waiting time of is approximated by j=� and the corresponding abandonment

rate by (4.22).

For the GI=M=s +M(n) model, we need to make further approximations in order

to describe the potential waiting time of a customer who finds n other customers

waiting in line, upon arrival. Let WQ(n) represent a random variable with the con-

ditional distribution of the potential delay of an arriving customer, given that this

customer must wait before starting service, and given that the queue-length seen
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upon arrival, is equal to n. We have the approximate representation:

WQ(n) �
n∑
i=0 Xi ; (4.23)

where Xn�i is the time between the ith and (i + 1)st departure events. Since the

distribution of the Xi ’s is complicated, we assume that successive departure events

are either service completions, or abandonments from the head of the line. We also

assume that an prediction of the time between successive departures is 1=�. Under

our first assumption, after each departure, all customers remain in line except the

customer at the head of the line. The elapsed waiting time of customers remaining

in line increases, under our second assumption, by 1=�. Let Xn�l , which is the time

between the lth and (l+1)st departure events, have an exponential distribution with

rate s�+ �n � �l , where �k =∑kj=1 j =∑kj=1 h(j=�), k � 1, and �0 � 0. That is

the case because Xn�l is the minimum of s exponential random variables with rate

� (corresponding to the remaining service times of customers in service), and n� l
exponential random variables with rates  i , l + 1 � i � n (corresponding to the

abandonment times of the customers waiting in line).

The QLa delay prediction given to a customer who finds n customers in queue upon

arrival is

�QLa(n) =
n∑
i=0

1
s�+ �n � �n�i ; (4.24)

that is, �QLa(n) approximates the mean of the potential waiting time, E[WQ(n)].
The HOLa Predictor.

We are now ready to propose a new delay predictor for the M(t)=GI=s +GI model,

which we refer to as HOLa. This predictor requires knowledge of the abandonment-

time hazard- rate function, h. That is convenient from a practical point of view,
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because it is relatively easy to prediction hazard rates from system data; see Brown

et al. (2005).

We proceed in two steps: (i) we use the observed HOL delay, w , to prediction

the queue length seen upon arrival, and (ii) we use this queue-length prediction to

implement a new delay predictor, paralleling (4.24). Unlike QLa, HOLa exploits the

HOL delay, and does not assume knowledge of the queue length seen upon arrival.

For step (i), let Nw(t) be the number of arrivals in the interval [t � w; t] who do

not abandon. That is, Nw(t) + 1 is the number of customers seen in the system

upon arrival at time t, given that the observed HOL delay at t is equal to w . It

is significant that Nw has the structure of the number in system in a M(t)=GI=1
infinite-server system, starting out empty in the infinite past, with arrival rate �(u)
identical to the original arrival rate in [t � w; t] (and equal to 0 otherwise). The

individual service-time distribution is identical to the abandonment-time distribution

in our original system. Thus, Nw(t) has a Poisson distribution with mean

m(t; w) � E[Nw(t)] =
∫ t
t�w �(s)(1� F (t � s))ds ; (4.25)

where F is the abandonment-time cdf.

For step (ii), we use m(t; w) + 1 as an prediction of the queue length seen upon

arrival, at time t. In (4.22), we replace � by �̂, where �̂ is defined as the average

arrival rate over the interval [t � w; t], i.e., �̂ � (1=w) ∫ tt�w �(s)ds. We do so be-

cause approximating the arrival process we now have a nonstationary arrival process

instead of a stationary arrival process. Paralleling (4.24), the HOLa delay prediction

given to a customer such that the observed HOL delay, at his time of arrival, t, is
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equal to w , is given by:

�HOLa(t; w) � m(t;w)+1∑
i=0

1
s�+ �̂n � �̂n�i ; (4.26)

for m(t; w) in (4.25), �̂k = ∑kj=1 h(j=�̂), and �̂0 = 0. If we actually know the

queue length, then we can replace m(t; w) by Q(t), i.e., we can use QLa. There

remains to investigate ways of estimating the abandonment-time distribution needed

to implement QLh. We envision that such estimates will be based on long-term

estimates of customer time-to-abandon distribution, instead of real-time information

about customer abandonment times. Providing additional details relating to this

estimation is outside the scope of this thesis, and is left for future research.

4.9 Simulation Results for the M(t)=M=s+GI Model

In this section, we present simulation results for the M(t)=M=s + GI model, with

sinusoidal arrival rates. For the abandonment-time distribution, we considered M
(exponential), H2 (hyperexponential with SCV equal to 4 and balanced means), and

E10 (Erlang, sum of 10 exponentials). We consider non-exponential service-time

distributions in the appendix. In this section, we show plots of the simulation results

and tables with estimates of 95% confidence intervals.

Description of the Experiments.

We vary the number of servers, s, but consider only relatively large values (s � 100),
because we are interested in large service systems. We let the service rate, �, be

equal to 1. For the arrival rate function, �(u) in (4.12), we fix the relative frequency,


 = 1:571. This value of 
 corresponds to a mean service time E[S] = 6 hours, for
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daily arrival-rate cycles; see Table 4.1.

We consider a relative amplitude � = 0:5, and an average arrival rate �� = 140. The

instantaneous offered load in the system, at time t, is given by �(t)=s�. With � =
0:5, the offered load varies between 0:7 and 2:1. Because of customer abandonment,

the congestion is not extraordinarily high when the system is significantly overloaded.

We let the abandonment rate, � = 1, because that seems to be a representative

value. Simulation results for all models are based on 10 independent replications of

length 1 month each, assuming a daily cycle.

Results for the M(t)=M=s +M model.

Consistent with theory in §4.8, Table 4.4 and Figure 4.5 shows that QLm is the best

possible predictor, under the MSE criterion. The RRASE of QLm ranges from about

14% for s = 100 to about 4% when s = 1000. Figure 4.6 shows that s�ASE(QLm),

the ASE of QLm multiplied by the number of servers s, is nearly constant for all

values of s considered. This shows that QLm is asymptotically correct as s increases,

i.e., ASE(QLm) approaches 0 as s increases.

Table 4.4 shows that HOLa is the second best predictor for this model. The RRASE

of HOLa ranges from about 20% for s = 100 to about 6% for s = 1000. That is,

HOLa is relatively accurate for this model. The difference in performance between

HOLa and QLm is not too great: ASE(HOLa)/ASE(QLm) is close to 1.6, for all s.
Moreover, Figure 4.6 shows that HOLa is asymptotically correct: s � ASE(HOLa)
is also roughly equal to a constant, for all s.
The HOL predictor performs much worse than QLm and HOLa. For example, the

ratio ASE(HOL)/ASE(HOLa) ranges from about 3 for s = 100 to about 20 for

s = 1000. The RRASE of HOL ranges from about 33% for s = 100 to about

27% for s = 1000. That is, we do not see a considerable improvement in the
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Efficiency of QLm, HOLa, and HOL in the M(t)=M=s +M Model
s QLm HOLa HOL

100 3:059�10�3 5:556�10�3 1:623�10�2�1:95�10�4 �4:23�10�4 �9:52�10�4
300 9:911�10�4 1:630�10�3 1:114�10�2�7:07�10�5 �1:43�10�4 �4:33�10�4
500 5:474�10�4 9:653�10�4 1:033�10�2�4:42�10�5 �6:37�10�5 �2:34�10�4
700 4:076�10�4 6:780�10�4 9:866�10�3�2:08�10�5 �3:09�10�5 �2:26�10�4

1000 2:853�10�4 4:907�10�4 9:806�10�3�2:48�10�5 �1:90�10�5 �1:75�10�4
Table 4.4: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number of
servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours.
Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are measured in
units of mean service time squared per customer.

performance of HOL, as s increases. That is confirmed by Figure 4.6, where we see

that s � ASE(HOL) increases linearly, as s increases.

4.9.1 Results for the M(t)=M=s +H2 model

With H2 abandonment, Table 4.5 and Figure 4.7 shows that HOLa is the best

possible predictor, under the MSE criterion, for large values of s. In particular,

HOLa outperforms QLm for s � 300. The ratio ASE(QLm)/ASE(HOLa) ranges

from about 0.9 for s = 100 to about 3 for s = 1000. The RRASE of HOLa ranges

from about 20% for s = 100 to about 6% for s = 1000. However, the QLm predictor

remains relatively accurate for this model: RRASE(QLm) ranges from about 20%
for s = 100 to about 11% for s = 1000.
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Efficiency of QLm, HOLa, and HOL in the M(t)=M=s +H2 Model
s QLm HOLa HOL

100 3:166�10�3 3:710�10�3 7:951�10�3�1:52�10�4 �1:77�10�4 �5:38�10�4
300 1:488�10�3 1:148�10�3 4:768�10�3�5:61�10�5 �7:93�10�5 �2:16�10�4
500 1:192�10�3 7:139�10�4 4:227�10�3�5:26�10�5 �4:74�10�5 �1:85�10�4
700 1:067�10�3 5:180�10�4 3:960�10�3�4:18�10�5 �2:92�10�5 �1:31�10�4

1000 9:590�10�4 3:363�10�4 3:827�10�3�2:24�10�5 �1:86�10�5 �5:75�10�5
Table 4.5: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number of
servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours.
Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are measured in
units of mean service time squared per customer.
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Efficiency of QLm, HOLa, and HOL in the M(t)=M=s + E10 Model
s QLm HOLa HOL

100 9:542�10�3 6:481�10�3 4:531�10�2�4:26�10�4 �2:80�10�4 �1:79�10�3
300 7:711�10�3 2:551�10�3 3:744�10�2�2:94�10�4 �9:64�10�5 �9:55�10�4
500 7:083�10�3 1:666�10�3 3:652�10�2�2:63�10�4 �8:36�10�5 �8:56�10�4
700 6:875�10�3 1:360�10�3 3:622�10�2�1:73�10�4 �6:38�10�5 �5:22�10�4

1000 6:858�10�3 1:070�10�3 3:582�10�2�1:17�10�4 �4:27�10�5 �6:03�10�4
Table 4.6: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number of
servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours.
Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are measured in
units of mean service time squared per customer.
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The difference in performance between QLm and HOLa is particularly significant as

the number of servers, s, increases. Figure 4.8 also shows that HOLa is asymp-

totically correct as s increases: s � ASE(HOLa) is roughly constant for all s. In

contrast, s �ASE(QLm) increases roughly linearly, as s increases, which shows that

the performance of QLm deteriorates as s increases.

Figure 4.7 shows that HOL is, once more, the least effective predictor for this

model. The RRASE of HOL ranges from about 31% for s = 100 to about 22% for

s = 1000. The HOL predictor performs slightly better than with M abandonment:

ASE(HOL)/ASE(HOLa) ranges from about 2 for s = 100 to about 11 for s =
1000. Once more, we do not see an improvement in the performance of HOL, as

s increases: Figure 4.8 shows that s � ASE(HOL) increases roughly linearly as s
increases. The slope of the s � ASE(HOL) curve is substantially greater than that

of the s � ASE(QLm) curve.

Results for the M(t)=M=s + E10 model.
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Table 4.6 and Figure 4.9 shows that HOLa is the most effective predictor, under

the MSE criterion, for this model. The RRASE of HOLa ranges from about 11%
for s = 100 to about 4% for s = 1000. That is, HOLa is relatively accurate for this

model. Figure 4.10 shows that HOLa is asymptotically correct: s � ASE(HOLa) is

roughly equal to a constant for all values of s considered.

The QLm predictor performs significantly worse than HOLa, with E10 abandonment.

The ratio ASE(QLm)/ASE(HOLa) ranges from about 1.5 for s = 100 to about 6:5
for s = 1000. The RRASE of QLm ranges from about 13% for s = 100 to about

10% for s = 1000. Figure 4.10 shows that QLm is not asymptotically correct as s
increases.

The least effective predictor is, yet again, the HOL predictor. The RRASE of HOL

ranges from about 27% for s = 100 to about 25% for s = 1000. The difference

in performance between HOL and HOLa is remarkable: ASE(HOL)/ASE(HOLa)
ranges from roughly 7 for s = 100 to roughly 33 for s = 1000. Figure 4.6 shows

that s � ASE(HOL) increases linearly (and steeply) as s increases.
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4.10 Concluding Remarks

In this chapter, we studied the performance of alternative delay-history-based delay

predictors in the M(t)=GI=s and M(t)=GI=s + GI queueing models, which have

a nonhomogeneous Poisson process. A main conclusion is that the performance

of these delay-history-based delay predictors can degrade in face of time-varying

arrivals, which often occurs in practice; that is dramatically shown in Figure 4.2.

As a consequence, we developed refinements of HOL, in particular, the HOLm pre-

dictor in (4.7) for the M(t)=GI=s model and the HOLa predictor in (4.26) for the

M(t)=GI=s+GI model. Through simulation experiments, we showed that these pro-

posed predictors effectively cope with both time-varying arrivals and non-exponential

service-time and abandon-time distributions. We also established analytical results

supporting HOLm in §4.5. In particular, we quantified the difference in performance

between QL and HOLm and found that the ratio of their respective MSE’s is roughly

equal to 2, particularly for high values of the traffic intensity, �; see (4.13).

However, the new predictors lose some of their appeal compared to the simple HOL

and LES predictors, because they require information about the model, in particular,

the arrival-rate function and the mean time between successive departures. Hence,

in §4.7 we proposed ways to estimate the required information. Even if we rely on

real-time estimation of the mean time between successive departures, we showed

that we can obtain suitably accurate estimates without requiring that the observation

interval be too long. Table 4.3 showed that the HOLm predictor remains effective

even if the information is known imperfectly.

Our general strategy for creating the refined HOL predictors has been to approximate

the mean conditional delay, given the observed HOL delay by (i) approximating the

queue length, given the observed HOL delay, and (ii) approximating the expected
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delay given the queue length. As a consequence, direct queue-length-based delay

predictors would be preferred if the queue length is known. We would use QL,

studied in chapter 2, instead of HOLm without abandonment, and we would use

QLa, studied in chapter 3, instead of HOLa with customer abandonment. However,

in the introduction we observed that there are complex service systems such as Web

chat and ticket queues for which the queue length is not known.



5
Time-Varying Demand and Capacity

5.1 Introduction

In this chapter, we investigate alternative ways to predict, in real time, the delay

(before entering service) of an arriving customer in a service system such as a hospital

emergency department (ED) or a customer contact center. We model such a service

system by a queueing model with a time-varying arrival rate, a time-varying number

of servers, and customer abandonment. We develop four new predictors, two of

which exploit an established deterministic fluid approximation for a many-server

queueing model with those features. This chapter is an edited version of Ibrahim

and Whitt (2010b).

5.1.1 Recap of Previous Chapters

For completeness, we now briefly review relevant results from earlier chapters. We

started with the GI=M=s model (chapter 2), and extended to the GI=GI=s + GI

172
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model (chapter 3). We showed that standard queue-length-based predictors, which

are commonly used in practice, may perform poorly. We proposed new, more ac-

curate, queue-length-based predictors that effectively cope with non-exponential

service and abandonment-time distributions, which are often observed in practice;

see Brown et al. (2005).

Our most promising predictor, QLa, draws on the approximations in Whitt (2005b):

it approximates the GI=GI=s + GI model by the corresponding GI=M=s + M(n)
model, with state-dependent Markovian abandonment rates; see §5.3. Since QLa
assumes a stationary arrival process and a constant number of servers, it may per-

form poorly with time-varying arrivals and a time-varying number of servers, as we

will show. Therefore, there is a need to go beyond QLa.
We then considered theM(t)=GI=s+GI model (chapter 4) with time-varying arrival

rates and a constant number of servers. We focused on the HOL delay predictor.

We showed that HOL may perform poorly with time-varying arrival rates. When

arrival rates vary significantly over time, customer delays may vary systematically

as well, which leads to a systematically biased HOL predictor. We proposed refined

delay-history-based predictors by analyzing the distribution of customer delay in the

system, and showed that those new predictors perform far better than HOL. Our

most promising predictor is another approximation-based predictor, HOLa. The

HOLa predictor is similar to QLa; see §5.3. However, unlike QLa, HOLa exploits the

HOL delay and does not assume knowledge of the queue length seen upon arrival.

The HOLa predictor has superior performance with a constant number of servers,

but we will show that it too may perform poorly when the number of servers varies

significantly over time. Therefore, there is a need to go beyond HOLa.
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5.1.2 Main Contributions

In this chapter, we consider the M(t)=M=s(t) + GI model, which we describe in

§5.2. Since direct analysis of customer delay is complicated in this model, we

propose two different approaches: (i) in §5.3, we propose modified versions of QLa
and HOLa to account for a time-varying number of servers, and (ii) in §5.5, we

exploit deterministic fluid approximations for many-server queues with time-varying

arrivals and a time-varying number of servers, drawing upon recent work by Liu

and Whitt (2010). (The fluid model has also been extended to general service and

abandonment-time distributions with time-dependent parameters, and to networks

of queues. We leave such substantially more complicated scenarios to future work.)

We propose new queue-length-based and delay-history-based predictors. Extensive

simulation results show that those new predictors have a superior performance in

the M(t)=M=s(t) + GI model.

In Figure 5.1, we demonstrate potential problems with HOLa and QLa. In particu-

lar, we consider the M(t)=M=s(t)+M model with a sinusoidal arrival-rate intensity

function, �(t), and a sinusoidal number of servers, s(t), where there are periods of

overloading leading to significant delays. We assume that �(t) and s(t) have a pe-

riod equal to 4 times the mean service time; see §5.6.1. (Without loss of generality,

we measure time in units of mean service time.) With daily (24 hour) arrival-rate

cycles, this assumption is equivalent to having a mean service time E[S] = 6 hours.

We let the relative amplitude, �a, for �(t) be equal to 0.5. (The ratio of the peak

arrival rate to the average arrival rate is 1 + �a.) We let the relative amplitude, �s ,
for s(t) be equal to 0.3; see Figure 5.1.

The HOLa and QLa predictors assume that the number of servers seen upon arrival

is constant throughout the waiting time of the arriving customer, and equal to the
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average number of servers in the system. (In practice, one might use an estimate

of, say, the daily average number of servers.) In the second (third) subplot of

Figure 5.1, we plot simulation estimates of the average differences between HOLa
(QLa) delay predictions and actual delays observed in the system, as a function

of time (dashed curves). These simulation estimates are based on averaging 100

independent simulation replications. It is apparent that both HOLa and QLa are

systematically biased in the M(t)=M=s(t) +M model.

Here, we propose a refined HOL-based predictor, HOLr t , and a refined queue-length-

based predictor, QLr t . The HOLr t and QLr t predictors are based on the fluid model

in Liu and Whitt (2010). (Subscript “t” indicates that those predictors are based on

the fluid model with time-varying arrivals; that is to distinguish them from the refined

predictors of chapter 3 which are based on the fluid model with a stationary arrival

process.) Figure 5.1 nicely illustrates the improvement in performance resulting from

our proposed refinements: We plot simulation estimates of the average differences

between HOLr t (QLr t) delay predictions and actual delays observed in the system,

as a function of time (solid curves).

5.1.3 Organization of the Chapter

The rest of this chapter is organized as follows: In §5.2, we describe our general

framework. In §5.3, we briefly describe the QLa and HOLa predictors, considered

in §5.1, and propose modified predictors, QLma and HOLma , that cope with a time-

varying number of servers. In §5.4, we review a deterministic fluid model, developed

in Liu and Whitt (2010), for multiserver queues with time-varying arrival rates and

customer abandonment. In §5.5, we use these fluid approximations to develop new,

refined, delay predictors. In §5.6, we present simulation results showing that these



Chapter 5. Time-Varying Demand and Capacity 176

100 102 104 106 108 110 112 114 116
50

100

150

200
M(t)/M/s(t) + M Model with Sinusoidal Arrival Rates

 

 

100 102 104 106 108 110 112 114 116
−0.5

0

0.5

D
iff

er
en

ce
s

 

 

100 102 104 106 108 110 112 114 116
−0.5

0

0.5

Time in units of mean service times

D
iff

er
en

ce
s

 

 QL
rt

QL
a

HOL
rt

HOL
a

λ(t)
s(t)
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sinusoidal arrival rates (for model in §6.1). The differences between delay predictions and actual
(potential) delays observed are based on averaging 100 independent simulation replications.
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new predictors are effective in the M(t)=M=s(t) +M model. We make concluding

remarks in §5.7. In the appendix, we describe additional simulation results. In partic-

ular, we consider the M(t)=M=s(t)+GI model with non-exponential abandonment-

time distributions, and the M(t)=GI=s(t) + GI model with non-exponential service

and abandonment-time distributions. Finally, in the appendix, we also propose a

simple modified QLa-based delay predictor, QLsma , and study its performance in the

M(t)=M=s(t) +M model.

5.2 The Framework

In this section, we describe the M(t)=M=s(t) + GI queueing model and then the

performance measures that we use to quantify the performance of the alternative

delay predictors.

5.2.1 The Queueing Model

We consider the M(t)=M=s(t)+GI queueing model, which has a nonhomogeneous

Poisson arrival process with an arrival-rate function � � f�(u) : �1 < u < 1g.
Service times, Sn, are independent and identically distributed (i.i.d.) exponential

random variables with mean E[S] = ��1 (we omit the subscript when the specific

index is not important). Abandonment times, Tn, are i.i.d. with a general distribu-

tion and mean E[T ] = ��1. The arrival, service, and abandonment processes are

assumed to be independent. Customers are served according to the first-come-first-

served (FCFS) service discipline. The number of servers varies over time according

to the staffing function: s � fs(u) : �1 < u <1g.
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5.2.2 Performance measures

For completeness, we now indicate how we evaluate the performance of our can-

didate delay predictors. Once more, we use computer simulation to do the actual

estimation.

5.2.2.1 Average Squared Error (ASE).

In our simulation experiments we quantify the accuracy of a delay predictor by

computing the average squared error (ASE), defined by:

ASE � 1
k

k∑
i=1 (pi � ai)

2 ; (5.1)

where pi is the delay prediction for customer i , ai > 0 is the potential waiting time of

delayed customer i , and k is the number of customers in our sample. A customer’s

potential waiting time is the delay he would experience if he had infinite patience

(his patience is quantified by his abandon time). For example, the potential waiting

time of a delayed customer who finds n other customers waiting ahead in queue

upon arrival, is the amount of time needed to have n + 1 consecutive departures

from the system.

In our simulation experiments, we measure ai for both served and abandoning cus-

tomers. For abandoning customers, we compute the delay experienced, had the

customer not abandoned, by keeping him “virtually” in queue until he would have

begun service. Such a customer does not affect the waiting time of any other cus-

tomer in queue. As discussed in previous chapters, the ASE should approximate the

expected MSE for a stationary system in steady state with a constant arrival rate,

but the situation is more complicated with time-varying arrivals. We regard ASE as
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directly meaningful, but now we indicate how it relates to the MSE.

5.2.2.2 Weighted Mean Squared Error (WMSE).

Let WQL(t; n) represent a random variable with the conditional distribution of the

potential delay of an arriving customer, given that this customer must wait before

starting service, and given that the number of customers seen in line at the time

of his arrival, t, is equal to n. Let �QL(t; n) be some given single-number delay

estimate which is based on n and t. Then, the MSE of the corresponding delay

predictor is given by:

MSE(�QL(t; n)) � E[(WQL(t; n)� �QL(t; n))2] ; (5.2)

which is a function of t and n. In order to get the overall MSE of the predictor at

time t, we average with respect to the unconditional distribution of the number of

customers Q(t) = n, seen in queue at time t, i.e.,

MSE(t) � E[MSE(�QL(t;Q(t)))] : (5.3)

Finally, to obtain an average “per-customer” perspective, we consider a weighted

MSE (WMSE), defined by

WMSE �
∫ T0 �(t)MSE(t)dt∫ T0 �(t)dt : (5.4)

Our ASE is an estimate of the WMSE; for supporting theory see the appendix of

Massey and Whitt (1994).
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5.3 Modified Delay Predictors: QLma and HOLma
Figure 5.1 shows that QLa and HOLa may be systematically biased when the number

of servers, s(t), varies significantly over time. In this section, we propose modified

predictors, QLma and HOLma , which account for a time-varying number of servers. For

completeness, we begin by reviewing QLa and HOLa. Simulation results, described in

§5.6, show that QLma and HOLma are more accurate than QLa and HOLa, particularly

when the mean service time, E[S], is small.

5.3.1 The QLa and HOLa Predictors

Let WQL(t; n) denote the potential waiting time of a new arrival at time t, such

that the queue length at t, excluding the new arrival, is equal to n. We have the

representation:

WQL(t; n) �
n∑
i=0 Yi ; (5.5)

where Yn�i is the time between the ith and (i + 1)st departure epochs.

For QLa, we draw on the approximations in Whitt (2005b). That is, we approximate

the M=M=s+GI model by the M=M=s+M(n) model, with state-dependent Marko-

vian abandonment rates. We begin by describing the Markovian approximation for

abandonments, as in §3 of Whitt (2005b). We assume that a customer who is

jth from the end of the queue has an exponential abandonment time with rate  j ,
where  j is given by

 j � h(j=�); 1 � j � k ; (5.6)

k is the current queue length, � is the arrival rate, and h is the abandonment-time

hazard-rate function, defined as h(t) � f (t)=(1� F (t)); for t � 0 ; where f is the
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corresponding density function (assumed to exist).

Here is how (5.6) is derived: If we knew that a given customer had been waiting for

time t, then the rate of abandonment for that customer, at that time, would be h(t).
We, therefore, need to estimate the elapsed waiting time of that customer, given

the available state information. Assuming that abandonments are relatively rare

compared to service completions, it is reasonable to act as if there have been j arrival

events since our customer arrived. With a stationary arrival process, a simple rough

estimate for the time between successive arrival events is the reciprocal of the arrival

rate, 1=�. Therefore, the elapsed waiting time of our customer is approximated by

j=�, and the corresponding abandonment rate by (5.6).

With time-varying arrival rates, we replace � by �̂, where �̂ is defined as the average

arrival rate over some recent time interval. For example, assuming that we know

w , the elapsed delay of the customer at the HOL at the time of estimation, then

we could define �̂ as the average arrival rate over the interval [t � w; t], i.e., �̂ �
(1=w) ∫ tt�w �(s)ds. Alternatively, if we do not have information about the recent

history of delays in the system, and know only the queue length n, then we could,

for example, replace w by ŵ � (n + 1)=s� and compute �̂ � (1=ŵ) ∫ tt�ŵ �(s)ds.
For the M(t)=M=s +M(n) model, we need to make further approximations in or-

der to describe WQL(t; n): We assume that successive departure events are either

service completions, or abandonments from the head of the line. We also assume

that an estimate of the time between successive departures is 1=�̂. Under our first

assumption, after each departure, all customers remain in line except the customer

at the head of the line. The elapsed waiting time of customers remaining in line

increases, under our second assumption, by 1=�̂. Then, Yi has an exponential dis-

tribution with rate s� + �n � �n�i , where �k = ∑kj=1 j = ∑kj=1 h(j=�̂), k � 1,
and �0 � 0. That is the case because Yi is the minimum of s exponential random
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variables with rate � (corresponding to the remaining service times of customers in

service), and i exponential random variables with rates  l , n � i + 1 � l � n (cor-

responding to the abandonment times of the customers waiting in line). The QLa
delay prediction given to a customer who finds n customers in queue upon arrival is

�QLa(n) =
n∑
i=0

1
s�+ �n � �n�i ; (5.7)

that is, �QLa(n) approximates the mean of the potential waiting time, E[WQL(t; n)].
With a time-varying number of servers, we replace s in (5.7) by �s, defined as the

average number of servers in the system. In practice, we would use the daily average

number of servers in the system, instead of �s.
Unlike QLa, HOLa does not assume knowledge of the queue length seen upon arrival.

We proceed in two steps: (i) we use the observed HOL delay, w , to estimate

the queue length seen upon arrival, and (ii) we use this queue-length estimate to

implement a new delay predictor, paralleling (5.7).

For step (i), let Nw(t) be the number of arrivals in the interval [t�w; t] who do not

abandon. That is, Nw(t)+1 is the number of customers seen in queue upon arrival

at time t, given that the observed HOL delay at t is equal to w . It is significant

that Nw has the structure of the number in system in a M(t)=GI=1 infinite-server

system, starting out empty in the infinite past, with arrival rate �(u) identical to the

original arrival rate in [t � w; t] (and equal to 0 otherwise). The individual service-

time distribution is identical to the abandonment-time distribution in our original

system. Thus, Nw(t) has a Poisson distribution with mean

m(t; w) � E[Nw(t)] =
∫ t
t�w �(s)(1� F (t � s))ds ; (5.8)

where F is the abandonment-time cdf.
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For step (ii), we use m(t; w) + 1 as an estimate of the queue length seen upon

arrival, at time t. Paralleling (5.7), the HOLa delay estimate given to a customer

such that the observed HOL delay, at his time of arrival, t, is equal to w , is given

by:

�HOLa(t; w) � m(t;w)+1∑
i=0

1
s�+ �n � �n�i ; (5.9)

for m(t; w) in (5.8). If we actually know the queue length, then we can replace

m(t; w) by Q(t), i.e., we can use QLa. With a time-varying number of servers, we

replace s in (5.9) by �s.

5.3.2 Modified Predictors: QLma and HOLma

Now, we propose modified predictors, QLma and HOLma , that effectively cope with a

time-varying number of servers. In particular, we propose adjusting (5.7) as follows:

We replace s by s(ti) where ti denotes the estimated next departure epoch when

there are i remaining customers in line ahead of the new arrival, and tn+1 � t. Here

is how we define the QLma delay prediction:

�QLma (t; n) =
n∑
i=0

1
s(ti+1)�+ �n � �n�i ; (5.10)

where

ti = ti+1 + 1
s(ti+1)�+ �n � �n�i for 0 � i � n ; (5.11)

and tn+1 = t. For HOLma , we proceed similarly. In particular, we use

�HOLma (t; w) � m(t;w)+1∑
i=0

1
s(ti+1)�+ �n � �n�i ; (5.12)

where ti is given by (5.11) and tn+1 = t.
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It is important that QLma and HOLma reduce to QLa and HOLa, respectively, with

a constant number of servers. Hence, the new predictors are consistent with prior

ones, which were shown to be remarkably accurate in simpler models. In §5.5, we

take a different approach and propose new delay predictors based on fluid approxi-

mations, which we now review.

5.4 The Fluid Model with Time-Varying Arrivals

In this section, we review fluid approximations for the M(t)=M=s(t) + GI queueing

model, developed by Liu and Whitt (2010). It is convenient to approximate queue-

ing models with fluid models, because performance measures in fluid models are

deterministic and mostly continuous in time, which greatly simplifies the analysis.

Let Q(t; x) denote the quantity of fluid in queue (but not in service), at time t,
that has been in queue for time less than or equal to x time units. Similarly, let

B(t; x) denote the quantity of fluid in service, at time t, that has been in service

for time less than or equal to x time units. We assume that functions Q and B are

integrable with densities q and b, i.e.,

Q(t; x) =
∫ x
0 q(t; y)dy and B(t; x) =

∫ x
0 b(t; y)dy ;

where we define q(t; x) (b(t; x)) as the rate at which quanta of fluid that has been in

queue (service) for exactly x time units, is created at time t. Let Qf (t) � Q(t;1)
be the total fluid content in queue at time t, and let Bf (t) � B(t;1) be the

total fluid content in service at time t. We require that (Bf (t) � s(t))Qf (t) = 0
for all t, i.e., Qf (t) is positive only if all servers are busy at t. Under the FCFS

service discipline, we can define a boundary waiting time at time t, w(t), such that
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q(t; x) = 0 for all x > w(t):

w(t) = inffx > 0 : q(t; y) = 0 for all y > xg : (5.13)

In other words, w(t) is the waiting time experienced by quanta of fluid that enter

service at time t (and have arrived to the system at time t � w(t)). We assume

that the system alternates between intervals of overload (Qf (t) > 0; Bf (t) = s(t);
and w(t) > 0) and underload (Qf (t) = 0; Bf (t) < s(t); and w(t) = 0). For

simplicity, we assume that the system is initially empty. We also assume that there

is no fluid in queue at the beginning of every overload phase. For the more general

case, accounting for non-zero initial queue content, see §5 of Liu and Whitt (2010).

Let �F denote the complementary cumulative distribution function (ccdf) of the

abandon-time distribution; i.e., �F (x) = 1 � F (x). Let �G denote the ccdf of the

service-time distribution. The dynamics of the fluid model are defined in terms of

(q; b; �F ; �G;w) as follows:

q(t + u; x + u) = q(t; x) �F (x + u)�F (x) ; 0 � x � w(t) ; and, (5.14)

b(t + u; x + u) = b(t; x) �G(x + u)�G(x) : (5.15)

The queue length in the fluid model, at time t, is therefore given by

Qf (t) =
∫ w(t)
0 q(t; y)dy =

∫ w(t)
0 �(t � x) �F (x)dx ; (5.16)

where we use (5.14) to write q(t; x) = q(t � x; 0) �F (x) = �(t � x) �F (x).
Let v(t) denote the potential waiting time in the fluid model at time t. That is,

v(t) is the waiting time of infinitely patient quanta of fluid arriving to the system
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at t. Recalling that the waiting time of fluid entering service at t is equal to w(t),
it follows that this fluid must have arrived to the system w(t) time units ago, and

that

v(t � w(t)) = w(t) : (5.17)

Therefore, for a given feasible boundary waiting time process, fw(t) : t � 0g, we

can determine the associated potential waiting time process, fv(t) : t � 0g, using

(5.17).

Liu and Whitt (2010) show that, under some regulatory conditions, if Qf (t) > 0,
then w(t) must satisfy the following ordinary differential equation (ODE):

w 0(t) = 1� b(t; 0)
q(t; w(t)) ; (5.18)

for some initial boundary waiting time; see Theorem 5.3 of Liu and Whitt (2010).

With exponential service times, b(t; 0) = s(t)�+ s 0(t) whenever Qf (t) > 0, where

s 0(t) denotes the derivative of s(t) with respect to t. Note that this implies the fol-

lowing feasibility condition on s(t) when all servers are busy (i.e., during an overload

phase):

s(t)�+ s 0(t) � 0 for all t : (5.19)

This feasibility condition is possible because there is no randomness in the fluid

model. For the stochastic system, there would always be some probability of infea-

sibility. To that end, Liu and Whitt (2010), §6.2, develop an algorithm to detect the

time of first violation of this condition and construct the minimal feasible staffing

function greater than the initial infeasible staffing function.

Using (5.14), we can write that q(t; w(t)) = �(t�w(t)) �F (w(t)): As a result, with
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exponential service times,

w 0(t) = 1� s(t)�+ s 0(t)
�(t � w(t)) �F (w(t)) : (5.20)

Note that (5.20) is only valid for t such that Qf (t) > 0 (i.e., during an overload

phase). During underload phases, quanta of fluid is served immediately upon arrival,

without having to wait in queue, i.e., w(t) = 0. Using the dynamics of the fluid

model in (5.14) and (5.15), together with (5.20), we can determine w(t) for all t,
with exponential service times.

We now specify how to compute w(t) by describing fluid dynamics in underload and

overload phases. Assume that t0 is the beginning of an underload phase, and let

Bf (t0) be the fluid content in service at time t0. (We assume that Qf (t0) = 0.)
Let t1 denote the first time epoch after t0 at which Qf (t) > 0. That, the system

switches to an overload period at time t1. For all t 2 [t0; t1], the fluid content in

service is given by

Bf (t) = Bf (t0)e��(t�t0) +
∫ t
t0 �(t � x)e

��xdx : (5.21)

The first term in (5.21) is the remaining quantity of fluid, in service, that had

already been in service at time t0. The second term is the remaining fluid in service,

at time t, that entered service in the interval (t0; t1]. We define t1 as follows:

t1 = infft > 0 : Bf (t) � s(t)g, for Bf (t) in (5.21). Note that w(t) = 0 for all

t 2 (t0; t1]. Let t2 denote the first time epoch after t1 at which Qf (t) = 0. That is,

[t1; t2] is an overload phase. For all t 2 (t1; t2], we compute w(t) by solving (5.20).

We define t2 as follows: t2 = infft > t1 : w(0) = 0. At time t2 a new underload

period begins and we proceed as above to calculate w(t). As such, we obtain w(t)
for all values of t. Using w(t), we obtain v(t) via (5.17), and Qf (t) via (5.16), for
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all t.
Liu and Whitt (2010) also treat the case of non-exponential service times. The

analysis is much more complicated in that case, however. The main difficulty lies in

determining the service content density, b(t; x), which no longer solely depends on

the number of servers, s(t). Indeed, b(t; x) is obtained, with general service times,

by solving a complicated fixed point equation; see Theorem 5.1 of Liu and Whitt

(2010), and equation (22) in that paper.

Next, we use fluid approximations for w(t), v(t), and Qf (t), to develop new fluid-

based delay predictors for the M(t)=M=s(t)+GI model, which effectively cope with

time-varying arrivals, a time-varying number of servers, and customer abandonment.

5.5 New Fluid-Based Delay Predictors for the

M(t)=M=s(t) + GI Model

In this section, we propose new delay predictors for the M(t)=M=s(t) + GI model

by making use of the approximating fluid model described in the previous section.

5.5.1 The No-Information-Fluid-Based (NIF) Delay Predictor

We first propose a simple delay predictor that does not require any information

about the system, beyond the model. A natural candidate no-information (NI)

delay predictor is the mean potential waiting time in the system, at time t. Since

we do not have a convenient form for the mean, we use the fluid model of §5.4

to develop a simple approximation. Let the no-information-fluid-based (NIF) delay
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prediction given to a delayed customer joining the queue, at time t0, be

�NIF (t0) � v(t0) ; (5.22)

where v(t0) is the fluid approximation for the potential waiting time, at t0. To

compute v(t0), we use (5.17) and proceed as described in §5.4. The NIF predictor

is appealing because of its simplicity and its ease of implementation. It serves

as a useful reference point, because any predictor exploiting additional real-time

information about the system should do at least as well as NIF.

5.5.2 The Refined-Queue-Length-Based (QLr t) Delay Predictor

We now propose a predictor based on the queue length seen upon arrival to the

system. Let QLr t refer to this refined-queue-length-based predictor. The derivation

of QLr t is based on that of the simple queue-length-based predictor, QLs , which was

considered in chapter 3. (Note that QLr t is similar to QLr , of chapter 3, which was

based on the fluid model for a multiserver queue with a stationary arrival process and

a constant number of servers.) For a system having s(t) agents at time t, each of

whom on average completes one service request in ��1 time units, we may predict

that a customer, who finds n customers in queue upon arrival, will be able to begin

service in (n + 1)=s(t)� minutes. Let QLs refer to this simple queue-length-based

predictor, commonly used in practice. Let the predictor, as a function of n, be

�QL(t; n) = n + 1
s(t)� : (5.23)

In chapter 2, we showed that QLs is the most effective predictor, under the MSE

criterion, in the GI=M=s model, but that it is not an effective predictor when there
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is customer abandonment in the system.

Recognizing the simple form of the QLs predictor in (5.23), and its lack of predictive

power with customer abandonment, we propose a simple refinement of QLs , QLr t ,
which makes use of the fluid model in §5.4. Consider a customer who arrives to

the system at time t, and who must wait before starting service. In the fluid

approximation, the associated queue length, Qf (t), seen upon arrival at time t, is

given by (5.16). As a result, QLs;f predicts the delay of a customer arriving to the

system at time t, in the fluid model, as the deterministic quantity

�QLs;f (Qf (t)) = Qf (t) + 1
s(t)� :

The fluid approximation for the potential waiting time, v(t), is given by (5.17). For

QLr t , we propose computing the ratio

�(t) = v(t)=((Qf (t) + 1)=s(t)�) = v(t)s(t)�=(Qf (t) + 1) ; (5.24)

and using it to refine the QLs predictor. That is, the new delay prediction given to

a customer arriving to the system at time t, and finding n customers in queue upon

arrival, is the following function of n and t:

�QLr t(t; n) � �(t)� �QL(t; n) = v(t)� n + 1
Qf (t) + 1 ; (5.25)

for �(t) in (5.24). It is significant that �QLr t only depends on the number of servers,

s(t), through v(t) and Qf (t). Indeed, the queue length is directly observable in the

system, but the potential waiting time requires estimation, which is very difficult in

the M(t)=GI=s(t) + GI model. The advantage of using the fluid model is that it

provides a way of approximating the potential waiting time.
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5.5.3 The Refined HOL (HOLr t) Delay Predictor

We now propose a refinement of the HOL delay predictor. The HOL delay estimate,

�HOL(t; w), given to a new arrival at time t, such that the elapsed waiting time of

the customer at the head-of-the-line is equal to w , is well approximated by the

fluid boundary waiting time w(t) in (5.13). The potential waiting time of that

same arrival is approximately equal to v(t) (which is the fluid approximation of the

potential waiting time at t). Thus, we propose computing the ratio v(t)=w(t) (after

solving numerically for v(t) and w(t)), and using it to refine the HOL predictor. Let

HOLr t denote this refined HOL delay predictor. The delay prediction, as a function

of w and the time of arrival t, is defined as

�HOLr t(t; w) � v(t)
w(t) � �HOL(t; w) = v(t)

w(t) � w : (5.26)

The QLr t and HOLr t predictors reduce to the GI=GI=s + GI model, considered in

chapter 3, so that we have “version consistency”, as with QLma and HOLma .

5.6 Simulation Experiments for the M(t)=M=s(t)+M

Model

In this section, we describe simulation results quantifying the performance of all

candidate delay predictors in the M(t)=M=s(t) +M queueing model. Our methods

apply to general time-varying functions. To illustrate, we consider sinusoidal func-

tions which are similar to what is observed with daily cycles. Additional simulation

results with H2 (hyperexponential) and E10 (Erlang) abandonment-time distributions

are described in the appendix. We first vary the number of servers (from tens to
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hundreds) while holding all other system parameters fixed; see Figures 5.2 and 5.3.

We then vary the frequency of the arrival process (from slow variation to fast) while

holding all other system parameters fixed; see Table 5.2.

5.6.1 Description of the Experiments

We consider a sinusoidal arrival-rate intensity function given by

�(u) � ��+ ���a sin(
au); �1 < u <1 ; (5.27)

where �� is the average arrival rate, �a is the amplitude, and 
a is the frequency.

As pointed out by Eick et al. (1993b), the parameters of �(u) in (5.27) should be

interpreted relative to the mean service time, E[S]. Without loss of generality, we

measure time in units of mean service time. Then, we speak of 
a as the relative

frequency. Small (large) values of 
a correspond to slow (fast) time-variability in the

arrival process, relative to the service times. Table 5.1 displays values of the relative

frequency as a function of E[S], assuming a daily (24 hour) cycle. We could also

choose shorter cycles. For example, assuming an 8 hour cycle (typical number of

hours in a workday), E[S] in Table 5.1 should be divided by 3 (e.g., for 
a = 0:131,
E[S] = 10 minutes).

We consider a sinusoidal number of servers, s(t). Specifically, we assume that

s(t) = �s + �s�s sin(
st) ; (5.28)

where �s is the average number of servers. As in (5.27), 
s is the frequency and �s
is the amplitude.

In this section, we let �a = 0:5 and �s = 0:3. That is, we assume that �(t)
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Relative Frequency Mean Service Time
a E[S]
0.0220 5 minutes
0.0436 10 minutes
0.131 30 minutes
0.262 1 hour
1.57 6 hours
3.14 12 hours

Table 5.1: The relative frequency, 
, as a function of the mean service time, E[S], for a daily (24
hour) cycle.

fluctuates more extremely than s(t). We let the abandonment rate, �, be equal to

1. That is, the mean time to abandon is assumed to be equal to E[S], which seems

reasonable. We define the traffic intensity � � ��=�s�, and let � = 1:2.
We assume that 
a = 
s . It is important to emphasize that we do not seek, in

this chapter, to determine appropriate staffing levels in response to time-varying

arrival rates. Indeed, the problem of setting appropriate staffing levels to achieve

a time-stable performance (i.e., to stabilize the system’s performance measures) is

reasonably well understood; e.g., see Eick et al. (1993a, b), Feldman et al. (2008),

and references therein. In particular, proper staffing, when it can be done, will make

s(t) “out-of-phase” with �(t), i.e., 
a 6= 
s . We deliberately violate this restriction

because we are interested, here, in the less ideal case where the service provider has

limited ability to respond to unexpected demand fluctuations. In that setting, (i)

customers may experience significant delays which motivates the need for making

delay announcements, and (ii) we can study the time-varying performance of the

system (as opposed to a time-stable performance with appropriate staffing).

In addition to the ASE, we quantify the performance of a delay predictor by com-
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puting the root relative average squared error (RRASE), defined by

RRASE �
pASE

(1=k)∑ki=1 pi ; (5.29)

using the same notation as in (5.1). The denominator in (5.29) is the average

potential waiting time of customers who must wait. The RRASE is useful because

it measures the effectiveness of an predictor relative to the average potential waiting

time, given that the customer must wait. Simulation results, which we discuss next,

are based on 10 independent replications of length a few months each (depending

on the model), assuming a 24 hour cycle.

5.6.2 Simulation Results

5.6.2.1 From Small to Large Systems.

We study the performance of the candidate delay predictors in theM(t)=M=s(t)+M
model with 
a = 
s = 1:57. This relative frequency corresponds to E[S] = 6 hours

with a 24 hour cycle and to E[S] = 2 hours with an 8 hour cycle; see Table 5.1.

We consider this relatively large value of E[S] to describe the experience of waiting

patients in hospital ED’s where treatment times are typically long (hours or even

days in some cases). We study the impact of changing E[S] in §5.6.2.2. We study

the performance of our predictors as a function of �s. In particular, we let �s range

from 10 to 1000. Hence, our results are applicable to a wide range of real-life

systems, ranging from small to very large. The difference between the upper and

lower bounds of s(t) in (5.28) is equal to 2�s�s. Therefore, with �s = 0:3 (fixed), a

large value of �s corresponds to more extreme fluctuations in s(t). For example, with

�s = 10, s(t) fluctuates between 7 and 13, whereas with �s = 1000, s(t) fluctuates
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between 700 and 1300.

In this section, we present plots of �s � ASE (the average number of servers times

the ASE) of the candidate predictors as a function of �s; see Figures 5.2 and 5.3.

We do not show, here, separate results for QLa and HOLa. Indeed, those two

delay predictors perform nearly the same as QLma and HOLma in this case (but not

in all cases; see §5.6.2.2). We present corresponding tables with estimates (for all

predictors) of the 95% confidence intervals in the appendix.

Overview of performance as a function of �s.
From §2.4 of chapter 2, and §3.5 of chapter 3, we have theoretical results that

provide useful perspective for the more complicated models we consider here. For

example, we anticipate that the ASE should be inversely proportional to the number

of servers, and that the ratio ASE(HOL)/ASE(QLs) should be approximately equal

to (1 + c2a ), where c2a is the squared coefficient of variation (SCV, variance divided

by the square of the mean) of the interarrival-time distribution. (This relation was

shown to hold especially in large systems.) Similar relations are shown to hold here

too, provided that we use the refined, fluid-based, predictors.

Figures 5.2 and 5.3 show that, for fluid-based predictors, �s � ASE is roughly con-

stant, particularly for large �s. This means that the ASE of fluid-based predictors is

inversely proportional to �s, and thus converges to 0 in large systems. For example,

ASE(QLr t) ranges from about 0.1 for �s = 10 to about 7 � 10�4 for �s = 1000.
That is, fluid-based predictors are asymptotically correct. Additionally, the ratio

ASE(HOLr t)/ASE(QLr t) is roughly equal to a constant (equal to 1.3), particularly

for large �s. Figures 5.2 and 5.3 also show that the ASE of other predictors (i.e.,

QLma and HOLma ) are independent of �s. In particular, �s�ASE, for those predictors, is

roughly linear as a function of �s. (That is especially true for large �s.) Consequently,
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the ASE of those predictors should roughly equal a (non-zero) constant for large

systems.
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Figure 5.2: ASE of the alternative predictors in the M(t)=M=s(t)+M model for �(t) in (5.27) and
s(t) in (5.28), and a small average number of servers, �s. We let 
a = 
s = 1:57 which corresponds
to E[S] = 6 hours with a 24 hour arrival-rate cycle.

Additionally, Figures 5.2 and 5.3 show that the ASE’s of all delay predictors decrease

as �s increases. For example, the ASE of QLr t decreases by a factor of 150 in going

from �s = 10 to �s = 1000. (That is not surprising since the fluid model is a

remarkably accurate approximation of large systems.) Moreover, the RRASE’s of

all predictors decrease as well. That is, all predictors are relatively more accurate

in large systems. For example, the RRASE of QLma decreases from roughly 64%
for �s = 10 to roughly 46% for �s = 1000. (Note that QLma is not a very accurate
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Figure 5.3: ASE of the alternative predictors in the M(t)=M=s(t)+M model for �(t) in (5.27) and
s(t) in (5.28), and a large average number of servers, �s. We let 
a = 
s = 1:57 which corresponds
to E[S] = 6 hours with a 24 hour arrival-rate cycle.

predictor in this model, even when the number of servers is large.) Although all

predictors perform better in large systems, the corresponding ASE’s decrease at

different rates. Indeed, Figure 5.2 and 5.3 clearly show the superiority of fluid-based

predictors (i.e., QLr t , HOLr t , and NIF) for moderate to large values of �s, although

all predictors perform nearly the same for very small �s (e.g., �s = 10).
A closer look at the ASE’s. For small values of �s, Figure 5.2 shows that there is

no advantage in using fluid-based predictors over QLma and HOLma . Indeed, QLma is

the most accurate predictor for �s < 15. However, although QLma is more accurate
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than fluid-based predictors for small systems, the difference in performance is not

great. For one example, ASE(QLma )/ASE(QLr t) is roughly equal to 0.9 for �s = 10.
For another example, ASE(QLma )/ASE(NIF) is roughly equal to 0.6 for �s = 10.
Simulation experiments with an even smaller number of servers suggest that all

predictors perform poorly when the number of servers is too small. For example,

with �s = 5 (and all other parameters unchanged), the most accurate delay predictor

is QLma , but RRASE(QLma ) is roughly equal to 87%.

Figures 5.2 and 5.3 show that QLr t and HOLr t are more accurate than the rest

of the predictors for �s > 30 (with QLr t being the most accurate predictor). For

example, the RRASE of QLr t decreases from roughly 67% for �s = 10 to roughly

8% for �s = 1000. The NIF predictor is competitive for �s � 50. Indeed, the RRASE

of NIF ranges from about 84% for �s = 10 to about 12% for �s = 1000. For large �s,
QLma and HOLma perform nearly the same. For example, ASE(HOLma )/ASE(QLma )

is roughly equal to 1 for �s = 1000. They are both significantly outperformed by

fluid-based predictors. Indeed, ASE(QLma )/ASE(QLr t) ranges from about 0.9 for

�s = 10 to about 27 for �s = 1000. Also, ASE(QLma )/ASE(NIF) ranges from about

0.6 for �s = 10 to about 11 for �s = 1000.
Although NIF performs remarkably well in this model, other fluid-based predictors,

which exploit some information about current system state, perform better, partic-

ularly for large �s. For example, ASE(HOLr t)/ASE(NIF) ranges from about 1.5 for

�s = 10 to about 2.5 for �s = 1000. Also, ASE(QLr t)/ASE(NIF) ranges from about

1.3 for �s = 10 to about 1.8 for �s = 1000. These ratios are even greater for smaller

values of E[S]; see §5.6.2.2.
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ASE of the predictors in the M(t)=M=s(t) +M model as a function of E[S]
E[S] QLr t HOLr t NIF Qlma HOLma QLa HOLa
5 min. 2.82�10�3 4.49�10�3 8:89�10�3 2:20�10�3 3:56�10�3 5:05�10�3 6:38�10�3�2:5�10�4 �4:4�10�4 �2:7�10�4 �1:9�10�4 �1:7�10�4 �2:1�10�4 �2:1�10�4
30 min. 2.71�10�3 4:14�10�3 9:03�10�3 2:06�10�3 3:53�10�3 4:54�10�3 6:04�10�3�8:1�10�5 �1:2�10�4 �3:3�10�4 �4:2�10�5 �7:4�10�5 �3:5�10�5 �6:6�10�5
1 hr. 2.82�10�3 4.44�10�3 9.49�10�3 2.42�10�3 4.00�10�3 4.79�10�3 6.33�10�3�5:2�10�5 �8:1�10�5 �3:0�10�4 �6:0�10�5 �8:6�10�5 �8:1�10�5 �9:5�10�5
2 hrs. 3.49�10�3 5.38�10�3 1.04�10�2 4.06�10�3 5.85�10�3 6.32�10�3 8.04�10�3�8:0�10�5 1:2�10�4 3:4�10�4 �1:3�10�4 �2:0�10�4 �1:6�10�4 �2:0�10�4
6 hrs. 7:25�10�3 9:40�10�3 1:57�10�2 2:44�10�2 2:66�10�2 2:99�10�2 3:21�10�2�2:2�10�4 �2:1�10�4 �5:6�10�4 �4:4�10�4 �5:5�10�4 �4:6�10�4 �5:6�10�4

Table 5.2: Performance of the alternative predictors, as a function of E[S], in the M(t)=M=s(t)+M
model with �(t) in (5.27), s(t) in (5.28), and �s = 100. Estimates of the ASE are shown together
with the half width of the 95% confidence interval. The ASE’s are measured in units of mean service
time squared per customer.

5.6.2.2 From Small to Large Frequencies.

We now study the performance of the candidate delay predictors in theM(t)=M=s(t)+
M model for alternative values of the arrival-process frequency, 
a. In particular,

we consider values of 
a = 
s ranging from 0.022 (E[S] = 5 minutes with a 24

hour cycle) to 1.57 (E[S] = 6 hours with a 24 hour cycle); see Table 5.1. In the

following, we will measure E[S] with respect to a 24 hour cycle. It is important to

consider alternative values of E[S] to show that our delay predictors are accurate

in different practical settings. We let �(t) and s(t) be as in (5.27) and (5.28),

respectively, and let �s = 100. We leave all other parameters unchanged.

Overview of performance as a function of E[S]. With small E[S], the system

behaves at every time t like a stationary system with arrival rate �(t). Intuitively,

for small E[S], the number of both arrivals and departures during any given interval

of time becomes so large that the system approaches steady-state behavior during
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that interval. Therefore, we expect that delay predictors which use �(t) and s(t)
corresponding to each point in time, such as QLma and HOLma (see (5.10) and

(5.12)), will be accurate for small E[S].
Table 5.2 shows that QLa and HOLa are the least accurate predictors in this

model, for all values of E[S]. In contrast, their modified versions, QLma and HOLma ,

are much more accurate, especially for small E[S], as expected. For example,

ASE(QLa)/ASE(QLma ) is roughly equal to 2.3 for E[S] = 5 minutes. Also, the

ratio ASE(HOLa)/ASE(HOLma ) is roughly equal to 1.8 for E[S] = 5 minutes. This

shows the need to go beyond existing delay predictors, such as QLa and HOLa.
The difference in performance decreases as E[S] increases, however. For exam-

ple, ASE(QLa)/ASE(QLma ) is roughly equal to 1.2, and ASE(HOLa)/ASE(HOLma )

is roughly equal to 1.1, for E[S] = 6 hours.

In general, all predictors are more accurate for small E[S]. For example, the value

of RRASE(HOLr t) ranges from about 25% for E[S] = 5 minutes to about 29%
for E[S] = 6 hours. Also, RRASE(HOLma ) ranges from about 22% for E[S] = 5
minutes to about 49% for E[S] = 6 hours. Table 5.2 shows that although fluid-

based predictors perform nearly the same as the remaining predictors for small E[S]
(e.g., 5 minutes), they perform much better for large E[S] (e.g., 6 hours).

A closer look at the ASE’s. The QLma predictor is the most accurate predictor for

small E[S], slightly outperforming QLr t (which is the second most accurate predictor

in that case). Indeed, Table 5.2 shows that ASE(QLr t)/ASE(QLma ) is roughly equal

to 1.3 for E[S] = 5 minutes. The HOLma predictor is less accurate than QLma ,

particularly for small E[S]. Indeed, ASE(HOLma )/ASE(QLma ) ranges from about 1.6

for E[S] = 5 minutes to about 1.1 for E[S] = 6 hours. That is to be expected

since QLma exploits additional information about the queue length seen upon arrival,

unlike HOLma .
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For E[S] � 2 hours, however, QLr t is more accurate than QLma (and all remaining

predictors); e.g., ASE(QLr t)/ASE(QLma ) is roughly equal to 0.85 for E[S] = 6
hours. In larger systems, QLr t is more accurate than QLma for even smaller E[S]. For

example, with �s = 1000, ASE(QLma ) is slightly larger than ASE(QLr t) for E[S] = 30
minutes, and ASE(QLma )/ASE(QLr t) is roughly equal to 4.2 for E[S] = 2 hours.

The QLma and HOLma predictors both make systematic errors which cause their

ASE’s to increase dramatically with E[S]. They are, therefore, significantly less

accurate than fluid-based predictors for large E[S]. For example, RRASE(QLa)
ranges from about 27% for E[S] = 5 minutes to about 52% for E[S] = 6 hours,

whereas RRASE(QLr t) ranges from about 20% for E[S] = 5 minutes to about 25%
for E[S] = 6 hours. Also, RRASE(HOLma ) ranges from about 22% for E[S] = 5
minutes to about 49% for E[S] = 6 hours, whereas RRASE(HOLr t) ranges from

about 25% for E[S] = 5 minutes to about 29% for E[S] = 6 hours. Additionally,

Table 5.2 shows that ASE(QLma )/ASE(QLr t) ranges from roughly 0.8 for E[S] = 5
minutes to roughly 3.4 for E[S] = 6 hours, and ASE(HOLma )/ASE(HOLr t) ranges

from about 0.8 for E[S] = 5 minutes to about 2.9 for E[S] = 6 hours. Fluid-based

perform even better with a larger number of servers; e.g., see §5.6.2.1.

Finally, we now compare the performance of NIF to that of other fluid-based pre-

dictors. Table 5.2 shows that NIF remains less accurate than QLr t and HOLr t . For

example, ASE(NIF)/ASE(QLr t) ranges from about 3.1 for E[S] = 5 minutes to

about 2.1 for E[S] = 6 hours. Also, ASE(HOLr t)/ASE(NIF) ranges from about

2 for E[S] = 5 minutes to about 1.7 for E[S] = 6 hours. The NIF predictor is

the least accurate predictor for E[S] � 2 hours, yet it performs better as E[S]
increases. Indeed, it is more accurate than QLma and HOLma for large enough E[S].
For example, ASE(QLma )/ASE(NIF) ranges from about 0.25 for E[S] = 5 minutes

to about 1.6 for E[S] = 6 hours.
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5.6.2.3 Results for Non-Exponential Distributions.

In the appendix, we consider theM(t)=M=s(t)+GI model with H2 (hyperexponential

with balanced means and SCV equal to 4), and E10 (Erlang, sum of 10 exponentials)

abandonment-time distributions. Simulation results for those models are consistent

with those described in this section. In particular, fluid-based predictors are more

accurate than other predictors, for long enough E[S] and large enough �s, and the

difference in performance can be remarkable. For example, in theM(t)=M=s(t)+E10
model with E[S] = 6 hours and �s = 1000, ASE(QLma /ASE(QLr t) is roughly equal

to 18.

We also study the performance of all delay predictors with both non-exponential

service and abandonment-time distributions, i.e., we consider theM(t)=GI=s(t)+GI
model (we implement the alternative predictors by approximating the service-time

distribution by an exponential with the same mean); see §A.6 of the appendix.

We consider H2, E10, and D (deterministic) service-time distributions. We find

that the performance of the alternative predictors depends largely on the service-

time distribution beyond its mean. With H2 service times, fluid-based-predictors

remain more accurate than QLma and HOLma . In chapter 3, we treated the case

of deterministic service times, and found that QLa is not reliable in the GI=D=s +
GI model. Nevertheless, QLa remained effective with minimal variability in the

service-time distribution, e.g., with E10 service times. Here, we find that fluid-based

predictors are ineffective with bothD and E10 service times. In contrast, we find that

QLma and HOLma remain effective with deterministic (or nearly deterministic) service

times, and that they are considerably more accurate than fluid-based predictors in

that case.
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5.7 Concluding Remarks

In this chapter, we proposed alternative real-time delay predictors for nonstationary

many-server queueing systems and showed that they are effective in theM(t)=M=s(t)+
GI queueing model with time-varying arrival rates and a time-varying number of

servers.

Figure 5.1 showed that existing delay predictors that do not take account of time-

varying arrival rate and staffing, such as QLa and HOLa, can be systematically biased

in the M(t)=M=s(t) + GI model. Therefore, in §5.3, we proposed the modified

predictors, QLma and HOLma . Then, in §5.5, we exploited a fluid approximation for

the M(t)=M=s(t)+GI model developed in Liu and Whitt (2010) to obtain the new

fluid-based delay predictors, QLr t , HOLr t , and NIF. All new delay predictors proposed

in this chapter reduce to prior ones which were shown to be remarkably accurate in

simpler models. Throughout, we used simulation to study the performance of the

candidate delay predictors in several practical settings. We considered alternative

values of (i) the number of servers in the system, and (ii) the mean service time,

E[S].
QLr t is consistently more accurate than both HOLr t and NIF. In terms of ef-

ficiency (low ASE), fluid-based predictors are ordered by QLr t < HOLr t < NIF.

Consistent with prior theoretical results in chapters 2 and 3, simulation showed that

ASE(HOLr t)/ASE(QLr t) is roughly equal to a constant between 1 and 2; e.g., see

Figures 5.2 and 5.3. Although NIF is relatively accurate, particularly in large sys-

tems, it performs worse than both QLr t and HOLr because it does not exploit any

information about the current system state at the time of prediction.

Fluid-based predictors outperform QLma and HOLma in large systems with large

E[S]. Figure 5.3 showed that QLr t , HOLr t , and NIF are asymptotically correct
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in the M(t)=M=s(t) + M model, with a large E[S], unlike QLma and HOLma ; i.e.,

the ASE of fluid-based predictors is inversely proportional to the number of servers.

Moreover, Figure 5.2 showed that fluid-based predictors remain more accurate than

QLma and HOLma even when the number of servers is not too large, provided that

E[S] is large enough (e.g., �s = 30 and E[S] = 6 hours).

QLma and HOLma outperform fluid-based predictors in small systems with small

E[S]. Simulation showed that QLma is the most accurate predictor for small E[S],
particularly when the number of servers is small (e.g., E[S] = 5 minutes and �s = 10).
Table 5.2 showed that QLma remains the most accurate predictor even when the

system is relatively large (e.g., E[S] = 5 minutes and �s = 100). However, Table

5.2 also showed that the accuracy of QLma and HOLma decreases steadily as E[S]
increases. Indeed, both RRASE(QLma ) and RRASE(HOLma ) increase with increasing

E[S]. Although fluid-based predictors perform worse for large E[S] as well, their

RRASE’s increase much slower than RRASE(QLma ) and RRASE(HOLma ).

In some cases, there is not too much difference in performance between the

delay predictors. Figure 5.2 showed that QLma is only slightly more accurate than

QLr t in small systems with large E[S]; e.g., �s = 10 and E[S] = 6 hours. The same

conclusion also holds in large systems with small E[S]. For example, QLma is also

only slightly more accurate than QLr t for �s = 1000 and E[S] = 5 minutes. In those

cases, all delay predictors proposed are relatively accurate.



6
Conclusions

Motivated by interest in making delay announcements in service systems, we studied

alternative ways of predicting customer delay, in real time, in queueing models with

several realistic features. We started with the GI=M=s model (exponential service

times), and extended to GI=GI=s + GI (non-exponential service and abandonment

times), M(t)=GI=s + GI (time-varying demand), and M(t)=GI=s(t) + GI (time-

varying demand and capacity). We proposed several real-time delay predictors and

used mathematical analysis and computer simulation to evaluate their accuracy

in each model. We measured accuracy by the mean-squared error (MSE) which

we estimated via simulation by the average-squared error (ASE). Service systems

are typically much more complex than the stylized queueing models considered.

Nevertheless, the main results of this thesis indicate what to expect more generally.

We considered both delay-history-based and queue-length-based predictors. In Table

6.1, we summarize the information needed for the implementation of each predictor.

An important insight, which applies broadly, is that simplicity and ease of implemen-

tation are often obtained at the expense of statistical accuracy. In Table 6.2, we

205
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show how the different predictors are related. We have “version consistency” when

a given predictor reduces to a simpler one in a more elementary model. Version

consistency is important because it shows that the same delay predictor can apply

to a wide variety of models. We now summarize how different model characteristics

impact the performance of the predictors. The following general conclusions supple-

ment the specific remarks concluding each of the previous chapters. We conclude

this thesis by describing future research directions that remain to be investigated.

6.1 Arrival Process

Queue-length-based predictors do not depend on the arrival process. We

showed that, conditional on the queue length (number of waiting customers) seen

upon arrival, the potential waiting time of a new arrival depends solely on the times

between future departures (either service completions or abandonments from the

queue); e.g., see (2.5) and (3.9) which give expressions for WQ(n) in the GI=M=s
and GI=M=s+M models, respectively. Consequently, queue-length-based predictors

do not depend on the arrival process. In particular, their accuracy does not degrade

in face of variability in the arrival process. (Queue-length-based predictors which

rely on approximations to the system, such as QLa, QLr , or QLr t , exploit knowledge

of the arrival-rate intensity function, �(t), which we assume to be a deterministic

function of time.) Moreover, we showed that WQ(n) has the desirable property

that the prediction gets relatively more accurate as the observed queue length in-

creases; e.g., see (2.6) for WQ(n) in the GI=M=s model. Therefore, when the queue

length is large, as occurs in heavily-loaded systems, queue-length-based predictions

are relatively accurate.

Comparison of delay-history-based and queue-length-based predictors. To a
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Predictor Information About the Model Defined in

QL Q(t); s(t); � §2.2.2
QLmr Q(t); s(t); �; � §3.3.4

QLr , QLr t Q(t); s(t); �; F (x); �(t) §3.3.3,§5.5.2
QLm Q(t); s(t); �; � §3.3.2

QLa, QLma Q(t); s(t); �; F (x); �(t) §3.3.5,§5.3
HOLm w; s(t); �; �(t) §4.4

HOLa, HOLma w; s(t); �; F (x); �(t) §4.8, §5.3
HOLr t w; s(t); �; F (x); �(t) §5.5.3
NIF s(t); �; F (x); �(t) §5.5.1

Table 6.1: Summary of the information required for the implementation of each delay predictor.
Also included is the number for the section where the predictor was defined.

large extent, delay-history-based predictors can be regarded as queue-length-based

predictors modified by replacing the known queue length by an estimate of that queue

length. The conditional mean delay given the observed delay information (e.g., LES

delay) minimizes the MSE. Therefore, the conditional mean, or an approximation of

it, serves as a refined delay-history-based predictor. (For example, �dLES(wL) � wL is

the direct predictor and �rLES(w) � E[WLES(wL)] is a refined predictor, both based

on the LES delay, wL.) Refined predictors can remove all or nearly all of the bias,

but non-negligible variance remains. For a refined predictor, the queue length is es-

timated by the expected number of arrivals who do not abandon during the observed

waiting time. For one example, compare (2.5) and (2.9) which give expressions for

WQ(n) and WLES(wL) in the GI=M=s model. For another example, compare (3.9)

and (3.30) for similar expressions in the GI=M=s +M model. Thus, the increase

in MSE in going from queue-length-based to refined delay-history-based predictors

is primarily because of variability in the arrival process. With a stationary arrival

process, we found that refined and direct delay-history-based predictors perform

nearly the same, particularly when the number of servers is large; e.g., see Table

2.5 for a comparison of the performance of alternative HOL-based predictors in the
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M(t)=GI=s(t) + GI M(t)=GI=s + GI GI=GI=s + GI GI=M=s +M GI=M=s
QLma QLa QLa QLm QL
QLr t QLr t QLr QLr ��
HOLma HOLa HOLa �� ��
HOLr t HOLr t HOL HOL HOL
NIF NIF NI NI NI

Table 6.2: Version consistency of the predictors in the alternative queueing models. In a given row,
the predictor on the left, in the more complex model, reduces to the predictor on the right in the
simpler model. An empty entry indicates that we did not consider an equivalent predictor in that
particular model.

H2=M=s model. In the GI=M=s model, we established the asymptotic equivalence

of direct and refined delay-history-based predictors in the classical and many-server

heavy-traffic limiting regimes; see Theorems 2.6.1 and 2.6.2.

Recap of main theoretical results. We derived several theoretical results quanti-

fying the difference in performance between queue-length-based and delay-history-

based predictors. We found that predictors that do not exploit knowledge of the

queue length fare worse than queue-length-based predictors, largely according to

c2a ; c2a is the SCV of an interarrival time, a common measure of variability for a

renewal arrival process. In the GI=M=s model, we showed that the MSE tends to

be larger for LES and HOL than QL by the constant factor (c2a + 1) in both the

classical and many-server (quality-and-efficiency-driven, QED) heavy-traffic limiting

regimes (see §2.4). In §3.5, we established similar results for the GI=M=s + M
model. For example, we showed that MSE(LES) increases with c2a in the efficiency-

driven (ED) many-server limiting regime; see (3.37). As a result, we proved in

Corollary 3.5.3 that the difference in performance between QLm and LES, in the

ED limiting regime, depends strongly on the variability of the arrival process: The

two predictors perform nearly the same for low c2a , but not otherwise. Additionally,

we described results of simulation experiments substantiating our analysis; e.g., see



Chapter 6. Conclusions 209

§A.2 for performance in the GI=M=s +M model. Consistent with results for the

M=M=s model, we showed in Proposition 4 that the ratio MSE(HOLm)/MSE(QL)

is asymptotically (in heavy load) equal to 2/� in the M(t)=M=s model (� denotes

the traffic intensity). Additional simulation results showed that similar conclu-

sions should hold more generally as well. For one example, Table 4.2 showed that

ASE(HOLm)/ASE(QL) is roughly equal to a constant in the M(t)=GI=s model (de-

pending on the service-time distribution). For another example, Figures 5.2 and 5.3

showed that ASE(HOLr t)/ASE(QLr t) is roughly equal to a constant between 1 and

2 in the M(t)=M=s(t) + GI model.

Time-varying arrival rates. We showed in chapter 4 that the performance of

delay-history-based predictors also degrades in face of time-varying arrivals; that

was dramatically shown in Figure 4.2. Intuitively, when the delays vary systemati-

cally over time, as can occur with alternating periods of significant underload and

overload, the delay of a new arrival may not be like a recently observed delay. In

chapter 4, we considered the HOL predictor, but did so with the understanding

that results for HOL should apply equally well to LES and other delay-history-based

predictors (e.g., see Theorem 2.4.4). With time-varying arrivals, we showed that

refined predictors, such as HOLm, can perform significantly better than direct pre-

dictors, such as HOL (that is different than with a stationary arrival process); e.g.,

see Table 4.2 for a comparison of the ASE’s of HOL and HOLm in the M(t)=GI=s
model. However, the new refined predictors lose some of their appeal compared to

simple delay-history-based predictors, because they require additional information

about system parameters. We proposed estimation procedures for alternative sys-

tem parameters and quantified the estimation error resulting from those procedures

in §4.7.
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6.2 Customer Abandonment

Abandonment rate. As indicated by formulas (3.3) and (3.7) for the M=M=s +M
model in the ED regime, the steady-state queue length and delay in the system

generally tend to be inversely proportional to the abandonment rate, �. (Similar

results hold more generally for the GI=GI=s + GI model; see (3.6) and (3.7) of

Whitt (2006).) We usually let � = 1:0. But, we also considered other values of �,
such as � = 0:2 and � = 5:0. Changing � from 1.0 to 5.0 or 0.2 tends to change

congestion by a factor of 5. That is, the system is very heavily loaded when � =

0.2, but relatively lightly loaded when � = 5.0. As a result, we found that larger

(smaller) � leads to smaller (larger) ASE’s for all delay predictors considered; e.g.,

compare Tables A.8 and 3.2 for performance in the M=M=s+M model with � = 5:0
and � = 1:0, respectively.

Ignoring customer abandonment. Queue-length-based predictors which fail to

take abandonment into account can perform very poorly in face of significant cus-

tomer abandonment. For example, we showed in chapter 3 that the QL predictor

(which has superior performance in the GI=M=s model) consistently overestimates

delays in the GI=GI=s +GI model; e.g., see Figures 3.1-3.4 for performance in the

M=M=s+GI model. We used steady-state fluid approximations for the M=M=s+M
model in the ED regime to quantify the resulting prediction error in that model; see

(3.8). We found that this error increases with �.
Approximation by an exponential. Prior theoretical results in Whitt (2005b,

2006) suggest that performance measures in the system typically depend on the

abandonment-time distribution beyond its mean. Consistent with those results,

we found that queue-length-based predictors which approximate the abandonment-

time distribution by an exponential (with the same mean) have low predictive power
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when the abandonment-time distribution is not nearly exponential. To consider both

higher and lower variability relative to the exponential distribution, we considered H2
(hyperexponential with balanced means and SCV equal to 4), and E10 (Erlang, sum

of 10 exponentials) abandonment-time distributions.

Paralleling QL, we proposed in §3.3.2 a new predictor, QLm, which approximates

the GI=GI=s + GI model by a GI=M=s +M model with the same service-time and

abandon-time means. Under the MSE criterion, QLm is the most accurate predictor

in the GI=M=s + M model since it coincides, in that model, with the conditional

mean delay given the queue length. But, with non-exponential abandonment times,

QLm can perform very poorly; e.g., see Figures 3.5 and 3.6 for performance in a

heavily-loaded M=M=s + E10 model with large values of s.
Coping with non-exponential abandonment times. To effectively cope with non-

exponential abandonment-time distributions, often observed in practice (Brown et

al. (2005)), we developed new queue-length-based predictors exploiting established

approximations for the system. We proposed in §3.3.3 a refined predictor, QLr ,
which draws on a deterministic fluid approximation for the GI=GI=s + GI model,

developed in Whitt (2006). Extensive simulation results showed that QLr performs

remarkably better than QLm with non-exponential abandonment times. For example,

see Figures 3.1-3.6 for performance in the M=M=s + GI model. With time-varying

demand and capacity, we drew on a deterministic fluid approximation for a many-

server queueing model with those features, developed in Liu and Whitt (2010), to

obtain a similar predictor, QLr t , which reduces to QLr in the GI=GI=s +GI model;

see Table 6.2.

We proposed in §3.3.5 an approximation-based predictor, QLa, which approximates

the abandonment-time distribution (+GI) by state-dependent Markovian abandon-

ment (+M(n)), drawing on results in Whitt (2005b). Extensive simulation results
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showed that QLa has superior performance in the GI=M=s+GI model. For example,

Figures 3.3-3.6 showed that QLa performs remarkably well in theM=M=s+GI model

with H2 and E10 abandonment times. Since QLa assumes a constant arrival rate

and a constant number of servers, we proposed in §5.3 a modified version of QLa,
QLma , which we showed effectively copes with non-exponential abandonment times,

time-varying arrivals, and a time-varying number of servers; e.g., see Figures A.5-

A.8 for performance in the M(t)=M=s(t) +M model. The QLma predictor reduces

to QLa in the GI=GI=s + GI model; ; see Table 6.2.

Robustness of delay-history-based predictors. Delay-history-based predictors are

appealing because they are robust: They do not require knowledge of the model or

its parameters, and they rely solely on the history of recent delays in the system. As

a result, they are accurate in models with customer abandonment, irrespective of the

abandonment-time distribution (they make no assumptions about that distribution).

For example, Figures 3.3-3.6 showed that LES and HOL can significantly outperform

QLm in heavily-loaded M=M=s +H2 and M=M=s +E10 models with a large number

of servers.

6.3 Service Times

Deterministic service times. In this thesis, we considered H2, LN (lognormal), M,

E10, and D (deterministic) service times. In all models, we implemented the can-

didate predictors by approximating the service-time distribution by an exponential

distribution with the same mean service time. Simulation results with exponential

and non-exponential service times are generally consistent, with one notable ex-

ception. There is a significant increase in ASE for all predictors with deterministic

(constant) service times, with performance tending to be independent of the number
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of servers. That indicates a need for new methods for this special case; e.g., see

Table 3.7 for performance in the M=D=s +M model. (In that case, we found that

NI is the most accurate predictor.) With stationary arrivals, even very low variability

in the service times, e.g., the E10 distribution with SCV equal to 0:1, is enough for

our delay predictors to be relatively accurate; e.g., see Table 3.8 for results in the

M=E10=s +M model.

With time-varying arrivals and a time-varying number of servers, the situation is more

complicated. In that case, we found that low-variability service-time distributions

can be problematic for some predictors, but not for others. For example, Tables A.36

and A.38 showed that fluid-based predictors, such as QLr t and HOLr t , are ineffective

with E10 service times, whereas QLma and HOLma remained relatively effective in that

case. The fluid model proposed in Lui and Whitt (2010) extends to non-exponential

service times. Therefore, there remains the possibility to develop new fluid-based

predictors based on the more general, and significantly more complicated, fluid

model. We leave such extensions to future research.

Approximation by an exponential. Delay predictors which are equal to the con-

ditional mean delay (given some state information) with M service times tend to

overestimate or underestimate delays with GI service times. That is primarily be-

cause many remaining service times at the new arrival epoch, t, are residual service

times for service times begun prior to time t. With a new-better-than-used (NBU)

distribution, such as E10, approximation by an exponential leads to overestimating

the residual service times and thus the overall delay. In contrast, with a new-worse-

than-used (NWU) distribution, such as H2, approximation by an exponential leads

to underestimating the residual service times and thus the overall delay. We proved

those results for HOLm and QL in the M(t)=GI=s model; see Propositions 1 and 2.

Simulation showed that similar conclusions hold in more general models as well.
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6.4 Number of Servers

Throughout this thesis, we primarily focused on a large number of servers (hundreds)

because we are interested in large service systems. Nevertheless, we also studied

systems with a medium (tens) or small (less than ten) number of servers. We es-

tablished several results quantifying the asymptotic (i.e., in large systems) accuracy

of the alternative predictors. Those results confirm that our proposed predictors are

remarkably accurate in large systems.

Asymptotic results for large systems. A predictor is asymptotically relatively

consistent if the ratio of the predictor to the quantity being predicted (here, the

potential delay) converges to 1; a predictor is asymptotically relatively efficient if

the ratio of the MSE to the square of the mean converges to 0. In chapter 2,

we established asymptotic results (for the performance of several predictors) in the

GI=M=s model. In Theorem 2.6.2, we showed that QL and HOL are both relatively

efficient and consistent in the (many-server) QED limiting regime. We also showed

that QL is asymptotically more efficient than HOL, in that regime, by the constant

factor (c2a +1). In §2.6.3, we showed that RCS and RCS�ps are relatively efficient

in the QED regime, whereas LCS is not. We also showed that all delay-history-based

predictors are asymptotically equivalent in the classical heavy-traffic regime.

A predictor is asymptotically correct if it is effective in large systems. In particular,

the corresponding MSE (ASE) converges to 0 as the number of servers increases.

In simulation experiments, we computed s � ASE (the number of servers times the

ASE) for the alternative predictors. A predictor is asymptotically correct if s �ASE

is roughly equal to a constant for large values of s. In §3.5, we established asymp-

totic results for several predictors in the GI=M=s + M model, in the ED regime.

In particular, we showed in Corollary 3.5.1 that the NI predictor is asymptotically
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correct in that limiting regime. That indicates that all predictors need be asymp-

totically correct as well to be worth serious consideration. In Theorems 3.5.1 and

3.5.4, we showed that QLm and LES are asymptotically correct in that setting as

well. Simulation results showed that similar properties should hold for QLa and QLr ,
in addition to LES, in the M=GI=s + GI model (with the exception of D service

times). For example, Figures 3.3-3.6 showed that QLa and QLr (as well as NI

and LES) are asymptotically correct in the M=M=s + GI model with H2 and E10
abandonment-time distributions.

In Proposition 3, we showed that HOLm is asymptotically correct in the M(t)=M=s
model (the variance of the actual delay, V ar [WHOL(t; w)], is equal to the MSE of

HOLm). Also, simulation results suggested that HOLa is asymptotically correct in

the M(t)=M=s +GI model; e.g., see Figures 4.5-4.10 for performance with M, H2,
and E10 abandonment.

In the M(t)=M=s(t) + GI model, we used simulation to show that several candi-

date predictors are asymptotically correct. For example, Figure 5.3 showed that

fluid-based predictors (i.e., NIF, QLr t and HOLr t) are asymptotically correct in

the M(t)=M=s(t) +M model. However, the same does not hold for the modified

predictors (i.e., QLma and HOLma ). Additional simulation results (in the appendix)

showed that the same conclusions hold with general abandonment-time distributions

as well; e.g., see Figures A.2 and A.4 for performance in the M(t)=M=s(t) + H2
and M(t)=M=s(t) + E10 models, respectively.

Small number of servers. Asymptotic results which hold, in the limit, as the num-

ber of servers increases do not adequately describe performance in small systems.

For example, Figures 5.2 (M(t)=M=s(t) +M), A.1 (M(t)=M=s(t) + H2), and A.3

(M(t)=M=s(t) + E10) showed that all predictors are not very accurate when the

number of servers is relatively small. With the same traffic intensity, congestion in
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the system tends to be higher with a small number of servers. (To illustrate, con-

sider the M=M=s model special case: The steady-state delay given that the delay is

positive has an exponential distribution with mean 1=s(1��); clearly the magnitude

of the delays increases as s decreases, for any fixed �.) Consequently, we found that

the ASE’s of all predictors tend to be higher in small systems; e.g., compare Tables

2.3, 2.2, and 2.1 for performance in the GI=M=s model with s = 1; 10; and 100,

respectively.

Time-varying number of servers. Figure 5.1 showed that existing delay predictors

that do not take account of time-varying arrival rate and staffing, such as QLa and

HOLa, can be systematically biased in the M(t)=M=s(t) + GI model. Therefore,

in §5.3, we proposed the modified predictors, QLma and HOLma . Then, in §5.5,

we proposed the new fluid-based delay predictors, QLr t , HOLr t , and NIF. Since

direct analysis is difficult in that setting, we relied on computer simulation to study

the performance of the alternative predictors proposed. We showed that the new

predictors are effective in the M(t)=M=s(t)+GI queueing model with time-varying

arrival rates and a time-varying number of servers. As explained in chapter 4, delay-

history-based predictors perform particularly poorly in face of such time variation.

6.5 Future Research Directions

There are many interesting research problems, closely related to this thesis, that

remain to be investigated. First, we mostly focused in our work on systems with a

relatively large number of servers. As suggested above, results with a small number

of servers could be dramatically different. Therefore, one future research direction

is to study delay predictions in smaller service systems. Second, a natural extension

to our work would explicitly model customer reactions to delay announcements,
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which is a phenomenon often observed in practice. Incorporating insights from

behavioral studies in waiting situations into modeling those reactions is an especially

promising direction. Third, it would be interesting to study the performance of the

alternative predictors proposed in an actual service system. That could be done

through experiments with real-life system data. With real-life data, it is important

to obtain all information needed for the implementation of the candidate predictors.

Fourth, as mentioned above, there remains to study ways of making effective delay

predictions when service times are deterministic or nearly so. From a practical

perspective, nearly deterministic service times are observed in amusement parks

or in subway systems. Finally, an important future research direction is to study

delay predictions in more complicated models with additional realistic features. For

example, one could consider models incorporating multiple customer classes and

some form of skill-based routing (such as in call centers), or networks of queues

where customers go through several service stations (such as in hospitals).



A
Additional Simulation Results

A.1 Additional Simulation Experiments for the GI=M=s

Model

In this section, we present additional simulation results quantifying the performance

of the alternative predictors in the GI=M=s model.

In Tables A.1-A.4, we present estimates of the ASE of several predictors conditional

on the level of actual delay in the system in the M=M=100 model. In particular,

we consider actual delays that fall in one of the following intervals: (E[W jW >
0]; 2E[W jW > 0]), (2E[W jW > 0]; 4E[W jW > 0]), (4E[W jW > 0]; 6E[W jW >
0]) and (6E[W jW > 0];1), where E[W jW > 0] denotes the expected waiting

time (in steady state) given that the wait is positive. (We often use a simulation

point estimate of E[W jW > 0].) In Tables A.5-A.7, we consider the RCS-based

predictor, RCS�f (s), in the M=M=100 model, D=M=100, and H2=M=100 models,

respectively. For RCS�f (s), the delay prediction is equal to the RCS delay among

218
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the last f (s) customers that have completed service. We consider different values

of f (s) to deduce the amount of data that need be examined to determine the

overall RCS customer. More simulation results appear in an online supplement to

Ibrahim and Whitt (2009a), available on the authors’ webpages.

A.1.1 Conditional Performance of the Predictors

Evaluating the conditional performance of the predictors is interesting. The relative

performance of the alternative predictors is roughly the same as before, but there are

some differences. For large delays, relatively accurate predictors become increasingly

accurate, and relatively inaccurate predictors become increasingly inaccurate. For

example, Table A.1 shows that, conditional on the level of delay falling in (E[W jW >
0]; 2E[W jW > 0]), the relative ASE (RASE, equal to the square root of the ASE

divided by the mean waiting time) for QL is roughly equal to 11% and RASE(NI) is

roughly equal to 16%, for � = 0:99. That is, the difference in performance between

QL and NI is not too great in that case. On the other hand, Table A.3 shows

that, conditional on the level of delay falling in (4E[W jW > 0]; 6E[W jW > 0]),
RASE(QL) is roughly equal to 6% whereas RASE(NI) is roughly equal to 600%,

for � = 0:99. The difference in performance between the two predictors is now

remarkable. In particular, Table A.3 shows that ASE(NI)/ASE(QL) is roughly equal

to 275 for � = 0:99 which considerably exceeds the theoretical value of 1=(1��) =
100 (ratio of the MSE’s in the M=M=s model).

When restricting attention to relatively small actual delays, the NI predictor is more

accurate than LCS. For example, Table A.1 shows that ASE(LCS)/ASE(NI) ranges

from about 5 for � = 0:9 to about 2 for � = 0:99. That is, the NI predictor is

significantly more accurate than LCS when the system is lightly loaded. That is
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significant because NI does not exploit any information about the system beyond

the model.

Finally, the RCS, LES, and HOL predictors are more accurate when conditioning

on large delays. For example, Table A.1 shows that all three predictors have an

RASE which is roughly equal to 17% for � = 0:99. In contrast, Table A.2 shows

that the RASE reduces to about 7% for the same value of �. We get even better

results when restricting attention to higher delays. In general, the performance of

these three predictors also improves when considering higher �. That substantiates

theoretical results which show that all three predictors are asymptotically correct.

A.1.2 The Effect of Delay Information: RCS�f (s)

We now describe simulation results quantifying the performance of RCS�f (s) in the

M=M=100 model. (In Table A.6 and Table A.7, we present corresponding results

for the D=M=100 and H2=M=100 models, respectively. We do not describe those

results separately here because they are largely consistent with the M case.) The

objective is to determine how much data need be examined to determine the identity

of the RCS customer. Theoretical results suggest that the RCS customer is very

likely to be among the last c
ps customers to have completed service. Extensive

simulation results, of which we show a sample here, show that this is indeed the

case.

The RCS predictor, exploiting all past delay information is, naturally, the most

accurate predictor among all RCS-�f (s) predictors considered. However, Table

A.5 shows that RCS-4ps, which looks for the RCS customer among the last 4ps
customers to have completed service, performs exactly the same as RCS. Therefore,

it suffices to look back among the last 4ps customers to have completed service
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in order to find the RCS customer. That can be significant. For example, with

s = 100, the service system manager need only examine the waiting times of the

last 4�p100 = 40 customers to have completed service, instead of the entire data

set. Table A.5 also shows that RCS-cps differs by at most 1% (from RCS) when

c = 2 and differs by at most 6% when c = 1.

A.2 Additional Simulation Results for the GI=M=s +

M Model

In this section, we present simulation results for the GI=M=s + M model which

substantiate the heavy traffic limits of §3.5. For the interarrival-time distribution,

we consider M, D, and H2. We consider the same values of s as before: s =
100; 300; 500; 700; and 1000. We let the service rate be � = 1:0, and consider

three different values of the abandonment rate, � = 1:0; 5:0, and 0:2. We vary the

arrival rate � to get a fixed value of � for alternative values of s, � = 1:4. In this

model, QLa coincides with QLm so we do not include separate results for it. For

more simulation results of the GI=M=s +M model, see §3.8.

A.2.1 The M=M=s +M Model with � = 5:0 and � = 0:2

In §3.6, we presented simulation results for theM=M=s+M model with � = 1:0. We

now consider different abandonment rates; specifically we let � = 5:0 and � = 0:2.
As indicated by formulas (3.3) and (3.7), the queue length and delay tend to be

inversely proportional to �. Thus, changing � from 1:0 to 5:0 or 0:2 tends to change

congestion by a factor of 5. The system is very heavily loaded when � = 0:2, but

relatively lightly loaded when � = 5:0.
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Table A.8 compares the efficiencies of the alternative predictors with � = 5:0, which

makes the model more lightly loaded. In this more lightly loaded setting, the ASE’s

of all the predictors are relatively low, being smaller than for the M=M=s+M model

with � = 1:0, in Table 3.2, by a factor of about 5.
The lighter loading makes the ED approximations less appropriate. Simulation es-

timates in Table A.8 allows us to compare the ASE’s of QLm, LES, and NI to the

expected MSE’s in formulas (3.25), (3.36), and (3.29), respectively; the relative

errors (RE) reported are higher than with � = 1:0, especially when the number of

servers is small (e.g., in Table A.8, with s = 100, the RE reported exceeds 20%).

But, the formulas are much more accurate with a larger number of servers (e.g.,

the RE’s are close to 1 or 2%, with s = 1000).
Table A.8 shows that the ratio ASE(LES)/ASE(QLm) is well approximated by the

numerical value, 2:0, predicted by equation (3.54), except when the number of

servers is small (e.g., with s = 100, RE � 10%). Similarly, Table A.8 shows that

the ratio ASE(NI)/ASE(QLm) is well approximated by the numerical value, 3.5,

given by (3.29), except when s is small: The RE reported when s = 100 is close to

20%.

Table A.9 compares the efficiencies of the alternative predictors with � = 0:2. In

this more heavily loaded setting, the ASE’s of the alternative predictors are higher

than with � = 1:0, by a factor of about 5, especially when the number of servers is

large.

Simulation estimates in Table A.9 allows us to compare the ASE’s of QLm, LES, and

NI to the expected MSE’s in formulas (3.25), (3.36), and (3.29), respectively. These

formulas are remarkably accurate: The RE’s reported are less than 2% throughout.

The ratios ASE(LES)/ASE(QLm) and ASE(NI)/ASE(QLm) agree closely with the
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values predicted by formulas (3.54) and (3.29): The RE’s reported are less than 5%
throughout.

A.2.2 The D=M=s +M Model with � = 1:0 and � = 5:0

Simulation results for the D=M=s+M model with � = 0:2 were described in §3.8.1.

The observations made above for the M=M=s +M model with � = 5:0 still apply,

essentially, to the D=M=s+M model with the same value of � (see Table A.11), so

we will not treat this case separately here. In the following, we describe simulation

results for the D=M=s +M model with � = 1:0; see Table A.10.

Table A.10 shows that, consistent with theory, QLm is the best possible delay pre-

dictor, under the MSE criterion. The RRASE of QLm ranges from about 16% when

s = 100 to about 5% when s = 1000. All predictors are relatively accurate as well;

e.g., the RRASE of LES ranges from about 24% when s = 100 to about 6% when

s = 1000. The QLr predictor is nearly as efficient as QLm.

Table A.10 also shows that, consistent with equation (3.54), the LES predictor

performs slightly worse than QLm: The RE between the simulation estimates for

ASE(LES)/ASE(QLm) and the numerical value, 1:286, given by (3.55) is less than

3% throughout. With a deterministic arrival process, the LES predictor performs

better, compared to QLm, than with a Poisson arrival process. Similarly, Table A.10

shows that, consistent with equation (3.29), the NI predictor is less efficient than

QLm: The RE between the simulation estimates for ASE(NI)/ASE(QLm) and the

numerical value, 2:25, given by (3.29) is less than 4% throughout. The QL predictor

is, once more, the least efficient predictor: The ratio ASE(QL)/ASE(QLm) ranges

from about 3 when s = 100 to about 15 when s = 1000.
Finally, Table A.10 shows that the ASE’s of QLm, LES, and NI are consistent with
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the analytical formulas for the expected MSE’s given in (3.25), (3.36), and (3.29),

respectively. These formulas are quite accurate: The RE’s reported are less than

3% throughout, except when the number of servers is large (e.g., with s = 1000 in

Table 21, RE � 7%).

A.2.3 The H2=M=s +M Model with � = 0:2 and � = 1:0

Simulation results for the H2=M=s+M model with � = 5:0 were described in §3.8.2.

The observations made above for the M=M=s +M model with � = 0:2 still apply,

essentially, to the H2=M=s+M model with the same value of � (see Table A.12), so

we will not treat this case separately here. In the following, we describe simulation

results for the H2=M=s +M model with � = 1:0; see Table A.13.

With hyperexponential interarrival times, Table A.13 shows that, consistent with

theory, QLm is the best possible delay predictor, under the MSE criterion. The

RRASE for QLm ranges from about 16% for s = 100 to about 5% when s = 1000.
The QLr predictor is only slightly outperformed by QLm.

The ED approximations are less accurate with highly variable interarrival times than

with exponential interarrival times. Table A.13 shows that, consistent with equation

(3.56), the LES predictor performs worse than QLm: The RE between the simulation

estimates for ASE(LES)/ASE(QLm) and the numerical value, 4:143, given by (3.56)

ranges from about 6% when s = 100 to about 2% when s = 1000. The LES pre-

dictor performs worse, compared to QLm, with hyperexponential interarrival times,

than with exponential interarrival times. Table A.13 shows that, consistent with

equation (3.29), the NI predictor is significantly less efficient than QLm (and LES):

The RE between the simulation estimates for ASE(NI)/ASE(QLm) and the numer-

ical value, 7:25, given by (3.29) ranges from about �9:0% when s = 100 to about
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�0:5% when s = 1000. The QL predictor performs significantly worse than all the

other predictors, particularly for large values of s. The ratio ASE(QL)/ASE(QLm)

ranges from about 4 when s = 100 to nearly 16 when s = 1000.
Finally, Table A.13 shows that the ASE’s of QLm, LES, and NI are consistent with

the analytical formulas for the expected MSE’s given in (3.25), (3.36), and (3.29),

respectively. These formulas are accurate for large values of s, but less so for smaller

values of s: e.g., RE � �8% when s = 100 and RE � �0:033% when s = 1000.

A.3 Additional Simulation Results for the M(t)=GI=s+

GI Model

In this section, we present simulation results for the M(t)=GI=s+GI model. For the

service-time distribution, we consider D and H2 distributions. For the abandonment-

time distribution, we consider M, H2, and E10. With sinusoidal arrival rates, we

consider a relative frequency 
 = 1:571 which corresponds to a mean service time

E[S] = 6 hours with daily cycles. The average traffic intensity � is fixed at � =
��=s� = 1:4. For the relative amplitude, we let � = 0:5. Our simulation results are

based on 10 independent replications of length 1 month each.

A.3.1 D service times

In Tables A.14, A.16, and A.18, we present simulation results for theM(t)=D=s+M,

M(t)=D=s +H2, and M(t)=D=s + E10 models, respectively. Tables A.14 and A.16

show that, with both M and H2 abandonment, we get simulation results consistent

with those reported earlier.
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Table A.14 shows that, with M abandonment, QLm remains the most effective

predictor under the MSE criterion. The RRASE of QLm ranges from about 17%
for s = 100 to about 14% for s = 1000. The second best predictor is the HOLa
predictor. The RRASE of HOLa ranges from about 20% for s = 100 to about

15% for s = 1000. The difference in performance between QLm and HOLa is not

too great: ASE(HOLa)/ASE(QLm) ranges from about 1.5 for s = 100 to 1:05 for

s = 1000. That is, the performance of QLm and HOLa is roughly the same for large

values of s. That is to be expected, since both predictors are asymptotically correct.

The least effective predictor, among those considered, is the HOL predictor. The

RRASE of HOL is close to 30% for all values of s considered. The HOL predictor

is not asymptotically correct for this model, as expected.

Table A.16 shows that we get similar results with H2 abandonment. In this case,

HOLa is the most effective predictor for large s. The RRASE of HOLa ranges from

about 25% for s = 100 to about 15% for s = 1000. The difference in performance

between QLm and HOLa is not too great: ASE(QLm)/ASE(HOLa) ranges from

about 0.95 for s = 100 to about 1.34 for s = 1000. The HOL predictor is, once

more, the least effective predictor: ASE(HOL)/ASE(HOLa) ranges from about 2

for s = 100 to about 3 for s = 1000.
With E10 abandonment, Table A.18 shows that we get results different from those

described above. Indeed, the performance of all predictors is bad, with performance

tending to be independent of the number of servers in the system. The performance

of QLm and HOLa is nearly the same, and they are both somewhat ineffective:

RRASE(HOLa) is close to 20% for all values of s considered. Moreover, plots of

s�ASE for all predictors show that all predictors are not asymptotically correct in

this model. The HOL predictor is, once more, the least effective predictor. The

ratio ASE(HOL)/ASE(HOLa) is close to 3 for all values of s considered. There is a
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need to consider other predictors in this model. We leave this interesting research

direction to future work.

A.3.2 H2 service times

In Tables A.15, A.17, and A.19, we present simulation results for the M(t)=H2=s +
M, M(t)=H2=s +H2, and M(t)=H2=s + E10 models, respectively.

Table A.15 shows that QLm remains the most effective predictor in this model.

The RRASE of QLm ranges from about 16% for s = 100 to less than 5% for

s = 1000. The HOLa predictor is the second best predictor in this model. The ratio

ASE(HOLa)/ASE(QLm) is close to 1.5 for all values of s considered. The HOL

predictor is, once more, the least effective predictor among those considered. The

RRASE of HOL ranges from about 30% for s = 100 to about 24% for s = 1000.
The ratio ASE(HOL)/ASE(QLm) ranges from about 4 for s = 100 to about 24 for

s = 1000. Once more, we see a significant degradation in the performance of HOL

with time-varying arrivals.

Table A.17 shows that, with H2 abandonment, QLm is no longer the most effective

predictor particularly for a large number of servers. The ratio ASE(QLm)/ASE(HOLa)
ranges from about 0.8 for s = 100 to about 2.5 for s = 1000. The RRASE of HOLa
(which is the best possible in this model) ranges from about 21% for s = 100 to

about 6% for s = 1000. The RRASE of QLm ranges from about 20% for s = 100
to about 11% for s = 1000. The HOL predictor is the least effective predictor:

ASE(HOL)/ASE(HOLa) ranges from about 2 for s = 100 to about 8 for s = 1000.
Plots of s�ASE of the predictors show that HOLa is asymptotically correct in this

model, whereas QLm and HOL are not.

Table A.19 shows that, with E10 abandonment, HOLa is the most effective predictor
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under the MSE criterion. The QLm predictor is the second best predictor. The

ratio ASE(QLm)/ASE(HOLa) ranges from about 1.4 for s = 100 to about 7 for

s = 1000. The RRASE of HOLa (which is the best possible in this model) ranges

from about 10% for s = 100 to less than 5% for s = 1000. The RRASE of QLm is

close to 10% for all s considered. The HOL predictor is the least effective predictor:

ASE(HOL)/ASE(HOLa) ranges from about 6 for s = 100 to about 34 for s = 1000.
Plots of s�ASE of the predictors show that HOLa is asymptotically correct, whereas

QLm and HOL are not.

A.4 Estimating the Required Additional Information

for HOLm
The statistical accuracy of HOLm is obtained at the expense of ease of implementa-

tion. In addition to the HOL delay, w , HOLm depends on the arrival-rate function,

�(t), and the mean time between successive service completions (which equals 1=s�
with s simultaneously busy servers and i.i.d. exponential service times with rate �).

In practice, the implementation of HOLm requires knowledge of those system param-

eters, which may require estimation from data. Any estimation procedure inevitably

produces some estimation error, which would affect the performance of HOLm.

In this section, we describe additional simulation experiments quantifying the effect

of additional information on HOLm. In particular, we would like to assess the level

of error x that is allowed for the performance of HOLm to remain better than that

of HOL. In general, we find that the relative of admissible error x is around 5%; see

Tables A.20-A.31. Note that the length of the estimation interval needed for each

of the service-time distributions depends on the variability of the distribution itself.
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In particular, high variability distributions, such as H2, require longer intervals.

A.5 Additional Simulation Results for the M(t)=M=s(t)+

GI Model

In this section, we study the performance of the alternative delay predictors with a

general (non-exponential) abandonment-time distribution and an exponential service-

time distribution. In particular, we consider the M(t)=M=s(t) + GI model for �(t)
in (5.27) and s(t) in (5.28). We let 
s = 
a = 1.57, which corresponds to E[S] = 6
hours with a 24 hour cycle. We let �a = 0:5 and �s = 0:3. We vary the average

number of servers, �s, from 10 to 1000. To consider both higher and lower variability

relative to the exponential distribution considered previously, we consider H2 (hyper-

exponential with balanced means and SCV equal to 4), and E10 (Erlang, sum of 10

exponentials) abandonment-time distributions. In Tables A.32 and A.33, we present

point estimates of the ASE and half width of the 95% confidence intervals for the

M(t)=M=s(t)+H2 and M(t)=M=s(t)+E10 models, respectively, as a function of �s.
Additionally, in Figures A.1-A.4, we plot �s�ASE (average number of servers times

the ASE) for the alternative delay predictors in those two models.

A.5.1 Results for the M(t)=M=s(t) +H2 Model.

A.5.1.1 Less reliable predictions in small systems.

Simulation results with H2 abandonment times are generally consistent with those

obtained with M abandonment times; see §4.9. However, with H2 abandonment, all

predictors are slightly less accurate when the number of servers is small. For one ex-
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ample, in theM(t)=M=s(t)+H2 model, RRASE(QLma ) is roughly equal to 72% (63%
with M abandonment) for �s = 10. For another example, in the M(t)=M=s(t) +H2
model, RRASE(QLr t) is roughly equal to 74% (67% with M abandonment) for

�s = 10; see Tables A.32 and A.34. In large systems, all predictors perform nearly

the same in both models.

A.5.1.2 Superiority of fluid-based predictors.

As in Figure 5.2, Figure A.1 shows that fluid-based predictors are competitive with

H2 abandonment, even when the number of servers is not too large. For example,

Table A.32 shows that ASE(QLma )/ASE(QLr t) is roughly equal to 1.2 for �s = 20.
(That is consistent with M abandonment; see Table A.34.) Consistent with Figure

5.3, Figure A.1 shows that �s�ASE for fluid-based predictors is roughly equal to a

constant for �s � 50. In contrast, �s�ASE for QLma and HOLma increases roughly

linearly with �s.
As with M abandonment, the accuracy of fluid-based predictors greatly improves as

the number of servers increases. The QLr t predictor is the most accurate predictor

for �s � 20, and RRASE(QLr t) ranges from about 74% (67% with M abandonment)

for �s = 10 to less than 9% (8% with M abandonment) for �s = 1000. The difference

in performance between QLr t and QLma can be, as with M abandonment, remark-

able; e.g., Table A.32 shows that ASE(QLma )/ASE(QLr t) ranges from about 0.9

for �s = 20 (same as with M abandonment) to about 22 for �s = 1000 (26 with M
abandonment). The HOLr t predictor is relatively accurate as well: RRASE(HOLr t)
ranges from about 83% for �s = 10 to about 11% for �s = 1000.
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A.5.1.3 Comparison of QLr t and HOLr t .
Interestingly, the difference in performance between HOLr t and QLr t is roughly

independent of the number of servers, for large systems. That is consistent with

simulation results for the M(t)=M=s(t)+M model, and with prior theoretical results

in chapters 2 and 3. Indeed, Table A.32 shows that ASE(HOLr t)/ASE(QLr t) is

roughly equal to 1.4, particularly for large �s. That is slightly larger than with M
abandonment, where the ratio ASE(HOLr t)/ASE(QLr t) is roughly equal to 1.3 for

large �s; see Table A.34.

A.5.2 Results for the M(t)=M=s(t) + E10 Model.

A.5.2.1 More reliable predictions in small systems.

Simulation results with E10 abandonment times are consistent with those obtained

with M or H2 abandonment, so we will be brief. With E10 abandonment, Table

A.33 shows that all predictors are relatively more accurate than with M or H2
abandonment, particularly when the number of servers is small (�s � 20). For

example, RRASE(QLma ) is roughly equal to 47% for �s = 10 (as opposed to 72%
with H2 abandonment, and 63% with M abandonment). Similarly, RRASE(QLr t)
is roughly equal to 52% for �s = 10 (as opposed to 74% with H2 abandonment, and

67% with M abandonment). Consistent with §4.9 and §A.5.1, Table A.33 shows

that all predictors are more accurate in large systems. Fluid-based predictors are

particularly accurate in that case.
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A.5.2.2 Superiority of fluid-based predictors.

As with M or H2 abandonment times, there is no advantage in using the fluid-based

predictors over the modified predictors when the number of servers is small. Indeed,

QLma is the most accurate predictor for small �s. For example, Table A.33 shows

that ASE(QLma )/ASE(QLr t) is roughly equal to 0.8 for �s = 10. As the system

size increases, fluid-based predictors gain in accuracy, compared to the remaining

predictors. Figure A.3 shows that QLr t and HOLr t are more accurate than the

remaining predictors for �s � 40. Also, consistent with Figures 5.3 and A.2, Figure

A.4 shows that QLr t and HOLr t are asymptotically correct, unlike QLma and HOLma .

Finally, as withM or H2 abandonment times, the QLr t predictor is the most accurate

predictor for �s � 30. For example, ASE(QLma )/ASE(QLr t) ranges from about 1.2

(1.5 with M abandonment) for �s = 20 to about 17 (26 with M abandonment) for

�s = 1000; see Tables A.33 and A.34.

A.5.2.3 Comparison of QLr t and HOLr t .
The difference in performance between QLr t and HOLr t decreases as the system

size increases. Indeed, Table A.33 shows that ASE(HOLr t)/ASE(QLr t) ranges from

roughly 1.3 for �s = 10 (consistent with both M and H2 abandonment) to roughly

1.1 for �s = 1000 (as opposed to 1.3 with M abandonment and 1.4 with H2 aban-

donment). That is, the difference in performance between QLr t and HOLr t is less

significant with E10 abandonment than with M or H2 abandonment. We will see in

§A.6 that QLr t is even less accurate than HOLr t in the M(t)=E10=s(t)+E10 model,

with both E10 service and abandonment times.
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A.6 Simulation Results for the M(t)=GI=s(t) + GI

Model

In this section, we describe simulation results for theM(t)=GI=s(t)+GI model. Our

objective is to study the performance of the alternative delay predictors with both

non-exponential service and abandonment-time distributions. We consider �(t) in

(5.27) and s(t) in (5.28). We let 
s = 
a = 1.57, which corresponds to E[S] = 6
hours with a 24 hour cycle. We let �a = 0:5 and �s = 0:3. We vary the average

number of servers, �s, from 10 to 1000.

To consider both higher and lower variability relative to the exponential distribution

considered previously, we consider H2 and E10 service and abandonment-time distri-

butions. In Tables A.35-A.38, we present point estimates of the ASE and half width

of the 95% confidence intervals in the M(t)=H2=s(t) + H2, M(t)=E10=s(t) + H2,
M(t)=H2=s(t) + E10, and M(t)=E10=s(t) + E10 models, respectively, as a function

of �s. We also consider the case of D service times and present simulation results for

the M(t)=D=s(t) + H2 and M(t)=D=s(t) + E10 models in Tables A.39 and A.40,

respectively. However, we do not discuss these results separately, because they are

largely consistent with those corresponding to E10 service times. The fluid model

proposed in Lui and Whitt (2010) extends to non-exponential service times. There-

fore, there remains the possibility to develop new fluid-based predictors based on the

more general, and significantly more complicated, fluid model. We leave such ex-

tensions to future research. Here, we implement all predictors by approximating the

service-time distribution by an exponential distribution with the same mean service

time, E[S].



Chapter A. Additional Simulation Results 234

A.6.1 H2 Service Times

A.6.1.1 Less reliable predictions.

The H2 distribution with SCV equal to 4 has higher variability relative to the M
distribution. Tables A.35 and A.37 (compared with Tables A.32 and A.33, re-

spectively) show that this extra variability makes all delay predictors relatively less

accurate. For one example, in the M(t)=H2=s(t)+H2 model, RRASE(QLr t) ranges

from about 94% (74% with M service times) for �s = 10 to about 23% (9% with M
service times) for �s = 1000; see Tables A.32 and A.35. For another example, in the

M(t)=H2=s(t) + E10 model, RRASE(QLma ) ranges from about 94% (72% with M
service times) for �s = 10 to about 53% (41% with M service times) for �s = 1000;
see Tables A.33 and A.37. Similar results also hold for the remaining predictors.

A.6.1.2 Superiority of fluid-based predictors.

Figures 5.3, A.2, and A.4 showed that fluid-based predictors are asymptotically

correct withM service times. With the incorrect fluid model, we no longer anticipate

that the fluid-based predictors are asymptotically correct with H2 service times.

Indeed, Tables A.35 and A.37 show that the ASE’s of fluid-based predictors are

not inversely proportional to �s in the M(t)=H2=s(t) +H2 and M(t)=H2=s(t) +E10
models, respectively. Nevertheless, fluid-based predictors remain more accurate than

both QLma and HOLma in those models, particularly for large �s. For one example, in

theM(t)=H2=s(t)+H2 model, ASE(HOLma )/ASE(HOLr t) ranges from about 1 (0.9

with M service times) for �s = 10 to about 5 (16 with M service times) for �s = 1000;
see Tables A.32 and A.35. For another example, in the M(t)=H2=s(t)+E10 model,

ASE(QLma )/ASE(QLr t) ranges from about 1.2 (0.8 withM service times) for �s = 10
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to about 2.5 (18 with M service times) for �s = 1000; see Tables A.33 and A.37.

That is, the difference in performance between fluid-based and modified predictors

remains significant with H2 service times, but it is considerably less than with M
service times.

A.6.1.3 Comparison of QLr t and HOLr t .
The QLr t predictor is generally the most accurate predictor with M service times.

In the M(t)=M=s(t) + H2 model, Table A.32 showed that QLr t outperforms the

remaining predictors for �s � 20. In the M(t)=M=s(t) + E10 model, Table A.33

showed that QLr t outperforms the remaining predictors for �s � 30. The sec-

ond most accurate predictor in both models is HOLr t . With H2 service times,

QLr t and HOLr t remain the most accurate predictors, but they have nearly identi-

cal performance for large �s. For one example, in the M(t)=H2=s(t) + H2 model,

ASE(HOLr t)/ASE(QLr t) is roughly equal to 1.1 (1.4 with M service times) for �s =
1000; see Tables A.32 and A.35. For another example, in the M(t)=H2=s(t) +E10
model, ASE(HOLr t)/ASE(QLr t) is roughly equal to 0.9 (1.0 with M service times)

for �s = 1000; see Tables A.33 and A.37.

A.6.2 E10 Service Times

A.6.2.1 More/less reliable predictions.

The E10 distribution is less variable than the M distribution. Tables A.36 and A.38

(compared with Tables A.32 and A.33, respectively) show that this lower variability

makes QLma and HOLma relatively more accurate and fluid-based predictors relatively

less accurate, particularly for large �s. For one example, in the M(t)=E10=s(t) +H2
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model, RRASE(HOLma ) ranges from about 67% (80% with M service times) for

�s = 10 to about 22% (42% with M service times) for �s = 1000; see Tables A.32

and A.36. For another example, in the M(t)=E10=s(t) +E10 model, RRASE(QLr t)
ranges from about 43% (52% with M service times) for �s = 10 to about 26% (7%
with M service times) for �s = 1000; see Tables A.33 and A.38.

A.6.2.2 Inferiority of fluid-based predictors.

With E10 service times, Tables A.36 and A.38 show that fluid-based predictors are

not competitive with E10 service times, and are consistently less accurate than both

QLma and HOLma (particularly for large �s). For example, in the M(t)=E10=s(t) +H2
model, ASE(QLr t)/ASE(QLma ) ranges from roughly 1.5 (1.0 with M service times)

for �s = 10 to roughly 1.8 (0.05 with M service times!) for �s = 1000; see Tables

A.32 and A.36. Similarly, in theM(t)=E10=s(t)+E10 model, ASE(QLr t)/ASE(QLma )

ranges from roughly 1.6 (1.2 with M service times) for �s = 10 to roughly 2.4 (0.05

with M service times!) for �s = 1000.

A.6.2.3 Comparison of QLr t and HOLr t .
With E10 service times, Tables A.36 and A.38 show that QLr t performs slightly

worse than HOLr t , for large �s. For one example, in the M(t)=E10=s(t)+H2 model,

ASE(QLr t)/ASE(HOLr t) ranges from about 0.7 (0.8 with M service times) for �s =
10 to about 1.2 (0.7 with M service times) for �s = 1000; see Table A.32 and A.36.

For another example, in the M(t)=E10=s(t)+E10 model, ASE(QLr t)/ASE(HOLr t)
ranges from about 0.7 (0.8 with M service times) for �s = 10 to about 1.1 (0.9 with

M service times) for �s = 1000; see Tables A.33 and A.38.
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A.6.2.4 Performance of NIF.

It is worthwhile mentioning that in the M(t)=E10=s(t) +E10 model, both QLr t and

HOLr t are less accurate than NIF for �s � 500; see Table A.38. That may seem

counterintuitive, at first glance, because both QLr t and HOLr t exploit information

about current system state at the time of prediction, unlike NIF. However, these

results should not be too surprising: All fluid-based predictors here are based on the

incorrect fluid model, assuming an exponential service-time distribution. Therefore,

they all make consistent prediction error. Indeed, QLma performs considerably better

than all fluid-based predictors in the M(t)=E10=s(t)+E10 model: Table A.38 shows

that ASE(NIF)/ASE(QLma ) is roughly equal to 2 for �s = 1000.

A.7 A Simple Modified QLa Predictor: QLsma
In this section, we propose a simple modified QLa predictor, QLsma . We define the

QLsma delay prediction as follows: We replace s in (5.7) by s(t), the number of

servers seen in the system upon arrival at time t. That is, we let

�QLsma = n∑
i=0

1
s(t)�+ �n � �n�i ; (A.1)

using the same notation as in (5.7); see §5.3.1. The QLsma predictor is appealing be-

cause it is easier to implement than QLma , defined in (5.10), and should be relatively

accurate when the number of servers does not change too rapidly over time.

In this section, we compare the performance of QLsma , QLa, and QLma in theM(t)=M=s(t)+
M model. We consider �(t) in (5.27) and s(t) in (5.28). We let �a = 0:5 and

�s = 0:3. We let the average number of servers, �s, range from 10 to 1000. In
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Figures A.5 and A.6, we plot the ASE of QLsma , QLa, and QLma , as a function of

�s, in the M(t)=M=s(t) + M model with 
a = 
s = 0:022, which corresponds to

E[S] = 5 minutes with a 24 hour cycle. In Figures A.7 and A.8, we plot the ASE

of QLsma , QLa, and QLma , as a function of �s, in the M(t)=M=s(t) +M model with


a = 
s = 1:57, which corresponds to E[S] = 6 hours with a 24 hour cycle.

A.7.1 Performance of QLsma , QLa, and QLma with Short Service

Times

For small E[S], as explained in §5.6.2.2, the number of both arrivals and depar-

tures during any given interval of time becomes so large that the system approaches

steady-state behavior during that interval. Therefore, we expect that delay predic-

tors which use �(t) and s(t) corresponding to each point in time, such as QLsma ,

will be accurate for small E[S]. Figures A.5 and A.6 confirm that QLsma performs

nearly as well as QLma in that case (indeed, the two ASE curves roughly coincide).

The ratio ASE(QLsma )/ASE(QLma ) is approximately equal to 1.0 for all values of

�s considered. That is, with small E[S], there is no advantage in using QLma over

QLsma .

The difference in performance between QLa and QLsma (or, alternatively, QLma ) is

not too great for small �s: Figure A.5 shows that ASE(QLa)/ASE(QLsma ) is roughly

equal to 1.1 for �s = 10. However, as the number of servers increases, the difference

in performance between those two predictors becomes significant: Figure A.6 shows

that ASE(QLa)/ASE(QLsma ) is roughly equal to 16 for �s = 1000.
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A.7.2 Performance of QLsma , QLa, and QLma with Long Service

Times

With large E[S], the number of servers varies significantly over time. Therefore,

we anticipate that QLsma will be less effective than QLma , since it assumes that the

number of servers is constant over the waiting time of the arriving customer (and

equal to the number of servers seen upon arrival). Figures A.7 and A.8 confirm this,

but show that the difference in performance between QLsma and QLma is not too great.

For one example, Figure A.7 shows that ASE(QLma )/ASE(QLsma ) is roughly equal to

1.1 for �s = 10. For another example, Figure A.8 shows that ASE(QLma )/ASE(QLsma )

is roughly equal to 1.3 for �s = 1000.
The QLsma predictor is only slightly more effective than QLa with a large E[S].
Indeed, Figures A.7 and A.8 show that ASE(QLa)/ASE(QLsma ) is less than 1.02 for

all values of �s considered. That is, with large E[S], simulation shows that there is no

considerable advantage in using QLma or QLsma over QLa. Recall from §4.9 that fluid-

based predictors are remarkably accurate in that case, and that they significantly

outperform both QLa and QLma .
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A.8 Tables and Figures

Conditional ASE in the M=M=s model with s = 100 for actual delays in ( \E[W jW > 0]; 2 \E[W jW > 0])
� \E[W jW > 0] ASE(QL) ASE(LES) ASE(HOL) ASE(RCS) ASE(RCS–

ps) ASE(LCS) ASE(NI)
0.99 9:833�10�1 1:380�10�2 2:802�10�2 2:782�10�2 3:052�10�2 3:090�10�2 4:884�10�2 2:504�10�2�6:92�10�2 �9:71�10�4 �2:08�10�3 �2:08�10�3 �2:09�10�3 �2:09�10�3 �2:18�10�3 �3:89�10�2
0.98 5:039�10�1 7:006�10�3 1:442�10�2 1:421�10�2 1:702�10�2 1:744�10�2 3:565�10�2 6:453�10�2�2:48�10�2 �3:47�10�4 �7:41�10�4 �7:42�10�4 �7:62�10�4 �7:62�10�4 �9:67�10�4 �6:08�10�3
0.95 2:028�10�1 2:772�10�3 5:924�10�3 5:695�10�3 8:711�10�3 9:145�10�3 2:339�10�2 1:040�10�2�3:02�10�3 �5:46�10�5 �1:07�10�4 �1:06�10�4 �1:37�10�4 �1:44�10�4 �4:23�10�4 �2:58�10�4
0.93 1:435�10�1 1:925�10�3 4:231�10�3 3:996�10�3 7:031�10�3 7:421�10�3 1:776�10�2 5:263�10�3�1:78�10�3 �2:72�10�5 �6:17�10�5 �6:00�10�5 �8:37�10�5 �8:77�10�5 �2:67�10�4 �1:20�10�4
0.90 9:929�10�2 1:293�10�3 2:982�10�3 2:734�10�3 5:564�10�3 5:850�10�3 1:202�10�2 2:516�10�3�2:75�10�3 �4:18�10�5 �8:61�10�5 �8:47�10�5 �1:44�10�4 �1:55�10�4 �4:45�10�4 �1:27�10�4

Table A.1: A comparison of the efficiency of different real-time delay predictors conditional on
the level of delay observed for the M=M=s queue with s = 100 and � = 1 as a function of the
traffic intensity �. We report point estimates for the conditional average squared error (ASE) in the
interval ( \E[W jW > 0]; 2 \E[W jW > 0]). Each estimate is shown with the half width of the 95 percent
confidence interval. The ASE’s are measured in units of mean service time squared per customer.

Conditional ASE in the M=M=s model with s = 100 for actual delays in (2 \E[W jW > 0]; 4 \E[W jW > 0])
� ASE(QL) ASE(LES) ASE(HOL) ASE(RCS) ASE(RCS �ps) ASE(LCS) ASE(NI)

0.99 2:589�10�2 5:128�10�2 5:108�10�2 5:373�10�2 5:417�10�2 7:176�10�2 2:882�1:56�10�3 �2:77�10�3 �2:77�10�3 �2:79�10�3 �2:79�10�3 �2:93�10�3 �3:81�10�1
0.98 2:713�10�3 5:842�10�3 5:556�10�3 9:434�10�3 1:000�10�2 2:731�10�2 3:058�10�2�7:57�10�5 �1:57�10�4 �1:58�10�4 �1:89�10�4 �1:92�10�4 �6:12�10�4 �1:62�10�3
0.95 1:359�10�2 2:727�10�2 2:706�10�2 2:986�10�2 3:028�10�2 4:974�10�2 7:834�10�1�6:75�10�4 �1:35�10�3 �1:35�10�3 �1:27�10�3 �1:26�10�3 �1:04�10�3 �9:44�10�2
0.93 5:536�10�3 1:141�10�2 1:117�10�2 1:445�10�2 1:496�10�2 3:762�10�2 1:300�10�1�1:26�10�4 �1:47�10�4 �1:46�10�4 �1:56�10�4 �1:79�10�4 �6:06�10�4 �4:04�10�3
0.90 3:886�10�2 8:119�10�3 7:867�10�3 1:133�10�2 1:187�10�2 3:345�10�2 6:387�10�2�5:65�10�5 �8:98�10�5 �8:77�10�5 �1:20�10�4 1:22�10�4 �3:60�10�4 �1:73�10�3

Table A.2: A comparison of the efficiency of different real-time delay predictors conditional on
the level of delay observed for the M=M=s queue with s = 100 and � = 1 as a function of the
traffic intensity �. We report point estimates for the conditional average squared error (ASE) in
the interval (2 \E[W jW > 0]; 4 \E[W jW > 0]). Each estimate is shown with the half width of the 95
percent confidence interval. The ASE’s are measured in units of mean service time squared per
customer.
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Conditional ASE in the M=M=s model with s = 100 for actual delays in (4 \E[W jW > 0]; 6 \E[W jW > 0])
� ASE(QL) ASE(LES) ASE(HOL) ASE(RCS) ASE(RCS–

ps) ASE(LCS) ASE(NI)
0.99 4:937�10�2 8:655�10�2 8:632�10�2 8:943�10�2 9:008�10�2 1:088�10�1 11.586�7:03�10�3 �6:89�10�3 �6:86�10�3 �7:24�10�3 �7:23�10�3 �1:02�10�2 �1:25
0.98 2:479�10�2 4:747�10�2 4:725�10�2 5:014�10�2 5:057�10�2 6:964�10�2 3.542�1:75�10�3 �3:06�10�3 �3:04�10�3 �3:09�10�3 �3:13�10�3 �3:67�10�3 �4:31�10�1
0.95 1:052�10�2 2:037�10�2 2:011�10�2 2:350�10�2 2:403�10�2 5:039�10�2 5:641�10�1�2:30�10�4 �6:30�10�4 �6:16�10�4 �8:16�10�4 �8:00�10�4 �3:34�10�3 �2:70�10�2
0.93 7:544�10�3 1:515�10�2 1:487�10�2 1:870�10�2 1:930�10�2 5:204�10�2 2:860�10�1�1:97�10�3 �3:08�10�4 �2:90�10�4 �4:28�10�4 �4:52�10�4 �3:18�10�3 �8:01�10�3
0.90 5:622�10�3 1:105�10�2 1:073�10�2 1:531�10�2 1:609�10�2 5:089�10�2 1:374�10�1�2:07�10�4 �3:82�10�4 �3:75�10�4 �6:07�10�4 �6:62�10�4 �2:52�10�2 �6:74�10�3

Table A.3: A comparison of the efficiency of different real-time delay predictors conditional on
the level of delay observed for the M=M=s queue with s = 100 and � = 1 as a function of the
traffic intensity �. We report point estimates for the conditional average squared error (ASE) in
the interval (4 \E[W jW > 0]; 6 \E[W jW > 0]). Each estimate is shown with the half width of the 95
percent confidence interval. The ASE’s are measured in units of mean service time squared per
customer.

Conditional ASE in the M=M=s model with s = 100 for actual delays > 6 \E[W jW > 0])
� ASE(QL) ASE(LES) ASE(HOL) ASE(RCS) ASE(RCS–

ps) ASE(LCS) ASE(NI)
0.98 3:361�10�2 7:526�10�2 7:521�10�2 7:735�10�2 7:776�10�2 9:012�10�2 7:902�1:21�10�2 �2:61�10�2 �2:60�10�2 �2:63�10�2 �2:64�10�2 �2:30�10�2 �1:29
0.95 1:862�10�2 3:353�10�2 3:319�10�2 3:755�10�2 3:820�10�2 6:823�10�2 1.496�2:22�10�3 �4:14�10�3 �4:13�10�3 �4:20�10�3 �4:49�10�3 �8:10�10�3 �1:65�10�1
0.93 1:306�10�2 2:306�10�2 2:274�10�2 2:739�10�2 2:803�10�2 6:603�10�2 7:362�10�1�1:26�10�3 �3:16�10�3 �3:06�10�3 �3:82�10�3 �3:96�10�3 �1:07�10�2 �6:29�10�2
0.90 1:042�10�2 1:872�10�2 1:828�10�2 2:378�10�2 2:438�10�2 7:160�10�2 0:3478�9:67�10�4 �8:63�10�4 �8:65�10�4 �1:41�10�3 �1:34�10�3 �6:04�10�3 �3:67�10�2

Table A.4: A comparison of the efficiency of different real-time delay predictors conditional on
the level of delay observed for the M=M=s queue with s = 100 and � = 1 as a function of the
traffic intensity �. We report point estimates for the conditional average squared error (ASE) when
delays are larger than 6 \E[W jW > 0]. Each estimate is shown with the half width of the 95 percent
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE in the M=M=s model with s = 100
� ASE(RCS) ASE(RCS–s) ASE(RCS–4ps) ASE(RCS–2ps) ASE(RCS–

ps) ASE(RCS– log s)
0.98 9:439�10�3 9:439�10�3 9:439�10�3 9:452�10�3(0:138) 9:779�10�3(3:60) 1:548�10�2(64:0)�3:13�10�4 �3:13�10�4 �3:13�10�4 �3:13�10�4 �3:18�10�4 �4:50�10�4
0.97 8:070�10�3 8:070�10�3 8:070�10�3 8:083�10�3(0:161) 8:395�10�3(4:03) 1:388�10�2(72:0)�1:71�10�4 �1:71�10�4 �1:71�10�4 �1:72�10�4 �1:80�10�4 �3:34�10�4
0.95 6:280�10�3 6:280�10�3 6:280�10�3 6:295�10�3(0:239) 6:571�10�3(4:63) 1:135�10�2(80:7)�1:78�10�4 �1:78�10�4 �1:78�10�4 �1:79�10�4 �1:82�10�4 �3:01�10�4
0.93 4:908�10�3 4:908�10�3 4:908�10�3 4:918�10�3(0:204) 5:161�10�3(5:15) 9:017�10�3(83:7)�1:22�10�4 �1:22�10�4 �1:22�10�4 �1:23�10�4 �1:23�10�4 �1:91�10�4
0.9 3:897�10�3 3:897�10�3 3:897�10�3 3:906�10�3(0:696) 4:108�10�3(5:41) 6:892�10�3(76:9)�9:62�10�5 �9:62�10�5 �9:62�10�5 �9:62�10�5 �1:01�10�4 �1:92�10�4

Table A.5: A comparison of the efficiency of the candidate RCS-f (s) delay predictors for the M=M=s
queue with s = 100 and � = 1 as a function of the traffic intensity �. We report point estimates for
the average squared error – (ASE). Each estimate is shown with the half width of the 95 percent
confidence interval. Also included in parentheses are the values of the relative percent difference –
(RPD) compared with ASE(RCS). The ASE’s are measured in units of mean service time squared
per customer.

ASE in the D=M=s model with s = 100
� ASE(RCS) ASE(RCS–s) ASE(RCS–4ps) ASE(RCS–2ps) ASE(RCS–

ps) ASE(RCS– log s)
0.98 3:617�10�3 3:617�10�3 3:617�10�3 3:624�10�3(0:194) 3:789�10�3(4:76) 6:678�10�3(84:6)�9:75�10�5 �9:75�10�5 �9:75�10�5 �9:75�10�5 �9:10�10�5 �1:27�10�4
0.97 2:906�10�3 2:906�10�3 2:906�10�3 2:913�10�3(0:241) 3:066�10�3(5:51) 5:665�10�3(94:9)�6:80�10�5 �6:80�10�5 �6:80�10�5 �7:13�10�5 �6:81�10�5 �1:22�10�4
0.95 2:200�10�3 2:200�10�3 2:200�10�3 2:205�10�3(0:227) 2:337�10�3(6:23) 4:406�10�3(100)�4:40�10�5 �4:40�10�5 �4:40�10�5 �4:42�10�5 �4:38�10�5 �1:13�10�4
0.93 1:852�10�3 1:852�10�3 1:852�10�3 1:856�10�3(0:216) 1:966�10�3(6:16) 3:594�10�3(94:1)�4:14�10�5 �4:14�10�5 �4:14�10�5 �4:22�10�5 �4:24�10�5 �1:06�10�4

Table A.6: A comparison of the efficiency of the candidate RCS-f (s) delay predictors for the D=M=s
queue with s = 100 and � = 1 as a function of the traffic intensity �. We report point estimates for
the average squared error – (ASE). Each estimate is shown with the half width of the 95 percent
confidence interval. Also included in parentheses are the values of the relative percent difference –
(RPD) compared with ASE(RCS). The ASE’s are measured in units of mean service time squared
per customer.
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ASE in the H2=M=s model with s = 100
� ASE(RCS) ASE(RCS–s) ASE(RCS–4ps) ASE(RCS–2ps) ASE(RCS–

ps) ASE(RCS– log s)
0.98 2:439�10�2 2:439�10�2 2:439�10�2 2:442�10�2(0:123) 2:511�10�2(2:95) 3:724�10�2(52:7)�4:84�10�4 �4:84�10�4 �4:84�10�4 �4:88�10�4 �4:92�10�4 �6:81�10�4
0.97 2:229�10�2 2:229�10�2 2:229�10�2 2:229�10�2(0:141) 2:367�10�2(3:28) 3:566�10�2(55:6)�4:70�10�4 �4:70�10�4 �4:70�10�4 �4:73�10�4 �4:73�10�4 �5:80�10�4
0.95 1:989�10�2 1:989�10�2 1:989�10�2 1:992�10�2(0:136) 2:058�10�2(3:48) 3:175�10�2(59:6)�3:67�10�4 �3:67�10�4 �3:67�10�4 �3:67�10�4 �3:64�10�4 �5:45�10�4
0.93 1:715�10�2 1:715�10�2 1:715�10�2 1:718�10�2(0:150) 1:780�10�2(3:78) 2:800�10�2(63:2)�3:56�10�4 �3:56�10�4 �3:56�10�4 �3:54�10�4 �3:60�10�4 �5:89�10�4
0.90 1:344�10�2 1:344�10�2 1:344�10�2 1:347�10�2(0:182) 1:399�10�2(4:06) 2:233�10�2(66:3)�4:90�10�4 �4:90�10�4 �4:90�10�4 �4:89�10�4 �4:99�10�4 �8:61�10�4

Table A.7: A comparison of the efficiency of the candidate RCS-f (s) delay predictors for the
H2=M=s queue with s = 100 and � = 1 as a function of the traffic intensity �. We report point
estimates for the average squared error – (ASE). Each estimate is shown with the half width of the
95 percent confidence interval. Also included in parentheses are the values of the relative percent
difference – (RPD) compared with ASE(RCS). The ASE’s are measured in units of mean service
time squared per customer.

Efficiency of the predictors in the M=M=s +M model with � = 1:4 and � = 5:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 6:318�10�4 7:172�10�4 1:226�10�3 1:391�10�3 1:809�10�3�1:53�10�6 �2:42�10�6 �5:06�10�6 �3:09�10�6 �7:22�10�6
300 1:935�10�4 2:130�10�4 4:813�10�4 4:035�10�4 6:591�10�4�6:54�10�7 �8:69�10�7 �1:86�10�6 �1:15�10�6 �3:06�10�6
500 1:151�10�4 1:253�10�4 3:467�10�4 2:361�10�4 4:009�10�4�5:41�10�7 �4:54�10�7 �8:45�10�7 �8:67�10�7 �3:05�10�6
700 8:235�10�5 8:965�10�5 2:963�10�4 1:675�10�4 2:872�10�4�4:04�10�7 �3:51�10�7 �9:01�10�7 �8:21�10�7 �2:58�10�6

1000 5:772�10�5 6:261�10�5 2:555�10�4 1:167�10�4 2:022�10�4�2:33�10�7 �2:66�10�7 �5:44�10�7 �6:87�10�7 �2:15�10�6
Table A.8: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=M=s+M model with � = 5:0. The ASE’s are measured in units of mean service
time squared per customer.
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Efficiency of the predictors in the M=M=s +M model with � = 1:4 and � = 0:2
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 1:425�10�2 1:545�10�2 1:238�10�1 2:894�10�2 4:963�10�2�1:15�10�4 �1:22�10�4 �5:16�10�4 �3:52�10�4 �6:31�10�4
300 4:705�10�3 5:099�10�3 1:094�10�1 9:573�10�3 1:657�10�2�5:33�10�5 �5:95�10�5 �5:04�10�4 �1:20�10�4 �4:98�10�4
500 2:879�10�3 3:103�10�3 1:046�10�1 5:832�10�3 9:926�10�3�4:27�10�5 �3:70�10�5 �4:19�10�4 �7:88�10�5 �5:18�10�4
700 2:029�10�3 2:194�10�3 1:0479�10�1 4:150�10�3 7:121�10�3�2:62�10�5 �3:34�10�5 �5:54�10�4 �1:09�10�4 �2:25�10�4

1000 1:444�10�3 1:558�10�3 1:031�10�1 2:995�10�3 4:935�10�3�4:43�10�5 �4:35�10�5 �3:47�10�4 �6:03�10�5 �3:74�10�4
Table A.9: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the M=M=s+M model with � = 0:2. The ASE’s are measured in units of mean service
time squared per customer.

Efficiency of the predictors in the D=M=s +M model with � = 1:4 and � = 1:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 2:882�10�3 2:994�10�3 7:705�10�3 6:545�10�3 6:496�10�3�7:89�10�6 �8:28�10�6 �1:22�10�5 �1:12�10�5 �3:60�10�5
300 9:520�10�4 9:903�10�4 5:256�10�3 1:243�10�3 2:188�10�3�4:42�10�6 �4:73�10�6 �8:05�10�6 �5:70�10�6 �2:50�10�5
500 5:753�10�4 5:989�10�4 4:774�10�3 7:537�10�4 1:297�10�3�3:51�10�6 �3:87�10�6 �5:70�10�6 �5:44�10�6 �1:91�10�5
700 4:096�10�4 4:260�10�4 4:548�10�3 9:149�10�4 9:537�10�4�3:18�10�6 �3:52�10�6 �8:71�10�6 �4:42�10�6 �1:68�10�5

1000 2:871�10�4 2:979�10�4 4:392�10�3 3:912�10�4 6:697�10�4�3:66�10�6 �3:23�10�6 �5:34�10�6 �5:17�10�6 �2:01�10�5
Table A.10: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the D=M=s +M model with � = 1:0. The ASE’s are measured in units of mean service
time squared per customer.
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Efficiency of the predictors in the D=M=s +M model with � = 1:4 and � = 5:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 6:0637�10�4 6:336�10�4 9:340�10�4 9:018�10�4 1:285�10�3�1:46�10�6 �1:28�10�6 �9:96�10�7 �1:65�10�6 �4:81�10�6
300 1:929�10�4 2:011�10�4 4:081�10�4 2:625�10�4 4:329�10�4�6:27�10�7 �6:51�10�7 �9:46�10�7 �9:16�10�7 �1:84�10�6
500 1:150�10�4 1:196�10�4 3:084�10�4 1:528�10�4 2:606�10�4�3:00�10�7 �3:71�10�7 �7:29�10�7 �4:14�10�7 �1:23�10�6
700 8:218�10�5 8:545�10�5 2:663�10�4 1:082�10�4 1:858�10�4�3:09�10�7 �3:22�10�7 �3:75�10�7 �2:97�10�7 �1:37�10�6

1000 5:718�10�5 5:950�10�5 2:343�10�4 7:475�10�5 1:274�10�4�3:74�10�7 �4:16�10�7 �4:70�10�7 �5:12�10�7 �1:05�10�6
Table A.11: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the D=M=s +M model with � = 5:0. The ASE’s are measured in units of mean service
time squared per customer.

Efficiency of the predictors in the H2=M=s +M model with � = 1:4 and � = 0:2
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 1:429�10�2 1:731�10�2 1:370�10�1 5:866�10�2 1:018�10�1�8:51�10�5 1:50�10�4 9:49�10�4 �4:87�10�4 �1:91�10�3
300 4:805�10�3 5:747�10�3 1:141�10�1 2:044�10�2 3:426�10�2�1:12�10�4 �1:10�10�4 �1:01�10�3 �3:03�10�4 �9:58�10�4
500 2:865�10�3 3:419�10�3 1:080�10�1 1:189�10�2 2:043�10�2�5:39�10�5 �6:99�10�5 �1:33�10�3 �1:768�10�4 �9:72�10�4
700 2:046�10�3 2:456�10�3 1:070�10�1 8:471�10�3 1:50�10�2�5:45�10�5 �6:68�10�5 �9:09�10�4 �1:72�10�4 �8:12�10�4

1000 1:422�10�3 1:686�10�3 1:037�10�1 5:962�10�3 9:843�10�3�3:61�10�5 �3:68�10�5 �1:06�10�3 �1:24�10�4 �4:99�10�4
Table A.12: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the H2=M=s+M model with � = 0:2. The ASE’s are measured in units of mean service
time squared per customer.
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Efficiency of the predictors in the H2=M=s +M model with � = 1:4 and � = 1:0
s ASE[�QLm ] ASE[�QLr ] ASE[�QL] ASE[�LES] ASE[�NI]

100 2:898�10�3 3:712�10�3 1:190�10�2 1:129�10�2 1:900�10�2�1:17�10�5 �1:65�10�5 �5:26�10�5 �5:73�10�5 �1:31�10�4
300 9:531�10�4 1:173�10�3 6:652�10�3 3:863�10�3 6:829�10�3�4:79�10�6 �9:07�10�6 �5:38�10�5 �2:15�10�5 �1:09�10�4
500 5:701�10�4 6:903�10�4 5:502�10�3 2:346�10�3 4:118�10�3�3:01�10�6 �2:97�10�6 �3:12�10�5 �1:78�10�5 �4:94�10�5
700 4:120�10�4 4:9888�10�4 5:143�10�3 1:694�10�3 2:939�10�3�2:38�10�6 �3:76�10�6 �2:83�10�5 �1:28�10�5 �5:86�10�5

1000 2:870�10�4 3:477�10�4 4:780�10�3 1:211�10�3 2:117�10�3�3:33�10�6 �2:69�10�6 �3:30�10�5 �1:70�10�5 �5:85�10�5
Table A.13: Point and confidence interval estimates of the ASEs - average square errors - of the
predictors in the H2=M=s+M model with � = 1:0. The ASE’s are measured in units of mean service
time squared per customer.

Efficiency of QLm, HOLa, and HOL in the M(t)=D=s +M Model
s QLm HOLa HOL

100 4:160�10�3 6:038�10�3 1:740�10�2�7:26�10�4 �7:40�10�4 �9:66�10�4
300 2:909�10�3 3:552�10�3 1:378�10�2�3:78�10�4 �3:97�10�4 �5:69�10�4
500 2:729�10�3 3:181�10�3 1:319�10�2�6:33�10�4 �6:53�10�4 �8:80�10�4
700 2:730�10�3 2:971�10�3 1:277�10�2�2:97�10�4 �2:91�10�4 �4:14�10�4

1000 2:963�10�3 3:165�10�3 1:286�10�2�4:25�10�4 �4:57�10�4 �5:83�10�4
Table A.14: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number
of servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours
and � = 1:4. Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are
measured in units of mean service time squared per customer.
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Efficiency of QLm, HOLa, and HOL in the M(t)=H2=s +M Model
s QLm HOLa HOL

100 3:927�10�3 5:981�10�3 1:618�10�2�5:39�10�4 �6:63�10�4 �1:22�10�3
300 1:214�10�3 1:885�10�3 1:086�10�2�9:46�10�5 �1:14�10�4 �5:24�10�4
500 7:404�10�4 1:137�10�3 1:018�10�2�5:91�10�5 �8:52�10�5 �6:05�10�4
700 5:542�10�4 7:844�10�4 9:763�10�3�3:36�10�5 �3:50�10�5 �2:65�10�4

1000 3:760�10�4 5:655�10�4 9:189�10�3�2:56�10�5 �2:82�10�5 �2:42�10�4
Table A.15: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number
of servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours
and � = 1:4. Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are
measured in units of mean service time squared per customer.

Efficiency of QLm, HOLa, and HOL in the M(t)=D=s +H2 Model
s QLm HOLa HOL

100 4:675�10�3 4:959�10�3 9:991�10�3�3:20�10�4 �3:60�10�4 �5:07�10�4
300 3:732�10�3 3:158�10�3 7:574�10�3�1:50�10�4 �1:35�10�4 �2:48�10�4
500 3:454�10�3 2:723�10�3 7:044�10�3�1:84�10�4 �1:59�10�4 �3:08�10�4
700 3:309�10�3 2:552�10�3 6:783�10�3�1:19�10�4 �1:19�10�4 �1:96�10�4

1000 3:269�10�3 2:433�10�3 6:585�10�3�7:00�10�5 �7:07�10�5 �1:04�10�4
Table A.16: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number
of servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours
and � = 1:4. Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are
measured in units of mean service time squared per customer.
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Efficiency of QLm, HOLa, and HOL in the M(t)=H2=s +H2 Model
s QLm HOLa HOL

100 3:307�10�3 3:972�10�3 7:816�10�3�2:10�10�4 �3:58�10�4 �6:48�10�4
300 1:642�10�3 1:285�10�3 4:636�10�3�1:38�10�4 �9:20�10�5 �2:87�10�4
500 1:282�10�3 7:739�10�4 3:985�10�3�9:09�10�5 �3:40�10�5 �1:79�10�4
700 1:155�10�3 5:510�10�4 3:862�10�3�8:24�10�5 �3:34�10�5 �1:50�10�4

1000 1:099�10�3 4:310�10�4 3:557�10�3�5:33�10�5 �1:80�10�5 �8:50�10�5
Table A.17: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number
of servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours
and � = 1:4. Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are
measured in units of mean service time squared per customer.

Efficiency of QLm, HOLa, and HOL in the M(t)=D=s + E10 Model
s QLm HOLa HOL

100 2:341�10�2 2:182�10�2 6:829�10�2�3:82�10�3 �4:15�10�3 �7:04�10�3
300 2:355�10�2 2:101�10�2 6:645�10�2�1:60�10�3 �1:78�10�3 �2:19�10�3
500 2:433�10�2 2:119�10�2 6:674�10�2�1:97�10�3 �2:16�10�3 �3:55�10�3
700 2:374�10�2 2:033�10�2 6:585�10�2�1:10�10�3 �1:29�10�3 �1:86�10�3

1000 2:372�10�2 1:997�10�2 6:492�10�2�8:48�10�4 �9:19�10�4 �1:33�10�3
Table A.18: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number
of servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours
and � = 1:4. Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are
measured in units of mean service time squared per customer.
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Efficiency of QLm, HOLa, and HOL in the M(t)=H2=s + E10 Model
s QLm HOLa HOL

100 9:970�10�3 7:130�10�3 4:190�10�2�6:08�10�4 �4:09�10�4 �1:82�10�3
300 7:599�10�3 3:025�10�3 3:746�10�2�2:80�10�4 �2:18�10�4 �9:82�10�4
500 7:097�10�3 1:983�10�3 3:589�10�2�2:57�10�4 �8:23�10�5 �3:96�10�4
700 6:373�10�3 1:741�10�3 3:554�10�2�1:70�10�4 �1:01�10�4 �3:13�10�4

1000 6:548�10�3 1:016�10�3 3:469�10�2�1:72�10�4 �7:86�10�5 �5:58�10�4
Table A.19: A comparison of the efficiency of QLm, HOLa, and HOL as a function of the number
of servers s, for sinusoidal arrival rates with �� and � corresponding to a mean service time of 6 hours
and � = 1:4. Point and 95% confidence interval estimates of the ASE’s are shown. The ASE’s are
measured in units of mean service time squared per customer.
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Efficiency in the M(t)=M=100 model with � = 0:1 and E[S] = 5 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 9:48�10�3 7:18�10�3 6:60�10�3 6:48�10�3 6:55�10�3 6:96�10�3 8:31�10�3 3:37�10�3 6:74�10�3�8:2�10�4 �5:3�10�4 �4:7�10�4 �4:8�10�4 �5:2�10�4 �6:2�10�4 �8:9�10�4 �2:4�10�4 �5:0�10�4
0.93 4:11�10�2 2:42�10�2 2:01�10�2 1:94�10�2 2:02�10�2 2:37�10�2 3:47�10�2 9:79�10�3 2:15�10�2�1:5�10�3 �7:5�10�4 �5:7�10�4 �5:8�10�4 �6:7�10�4 �9:5�10�4 �1:6�10�4 �2:8�10�4 �7:6�10�4
0.95 0.102 5:07�10�2 3:82�10�2 3:62�10�2 3:85�10�2 4:91�10�2 8:23�10�2 1:82�10�2 4:67�10�2�3:3�10�3 �1:4�10�3 �9:6�10�4 �9:8�10�4 �1:2�10�3 �1:9�10�3 �3:8�10�3 �4:5�10�4 �1:9�10�3
0.97 0.221 9:45�10�2 6:34�10�2 5:79�10�2 6:30�10�2 8:80�10�2 0.167 2:92�10�2 9:59�10�2�4:1�10�3 �1:8�10�3 �1:4�10�3 �1:5�10�3 �2:10�10�3 �3:6�10�3 �7:3�10�3 �1:0�10�3 �3:1�10�3
0.98 0.309 0.125 7:89�10�2 7:07�10�2 7:78�10�2 0.1135 0.228 3:52�10�2 0.135�6:4�10�3 �2:7�10�3 �1:9�10�3 �1:9�10�3 �2:2�10�3 �3:3�10�3 �6:26�10�3 �9:4�10�4 �3:8�10�3
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.20: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=M=100 queueing model with � = 0:1 and E[S] = 5 minutes. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.

Efficiency in the M(t)=M=100 model with � = 0:5 and E[S] = 5 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 4:40 1:24 0:449 0:302 0:417 1:02 2:96 0:148 16:92�5:3�10�2 �2:53�10�2 �1:21�10�2 �6:4�10�3 �9:3�10�3 �2:1�10�2 �4:1�10�2 �6:8�10�3 �1:4�10�1
0.93 6:01 1:63 0:548 0:351 0:520 1:37 4:09 0:177 28.0�5:0�10�2 �2:9�10�2 �1:5�10�2 �8:8�10�3 �1:5�10�2 �3:4�10�2 �7:2�10�2 �6:0�10�3 �0:27
0.95 7:29 1.96 0.645 0.410 0.620 1.66 4.98 0.202 38.06�9:3�10�2 �3:7�10�2 �1:7�10�2 �1:8�10�2 �2:8�10�2 �4:5�10�2 �7:1�10�2 �7:4�10�3 �0:32
0.97 8:48 2:21 0:688 0:431 0.702 1.97 5.96 0.216 49.8�0:12 �5:5�10�2 �2:4�10�2 �1:4�10�2 �2:7�10�2 �5:7�10�2 �0:11 �6:6�10�3 �0:43
0.98 9.21 2.40 0.741 0.454 0.737 2.09 6.39 0.226 56.3�8:2�10�2 �3:5�10�2 �2:3�10�2 �2:3�10�2 �3:0�10�2 �4:4�10�2 �7:4�10�2 �6:9�10�3 �0:40
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.21: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=M=100 queueing model with � = 0:5 and E[S] = 5 minutes. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.
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Efficiency in the M(t)=H2=100 model with � = 0:1 and E[S] = 5 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 2:39�10�2 1:77�10�2 1:68�10�2 1:72�10�2 1:82�10�2 2:08�10�2 2:75�10�2 1:10�10�2 1:77�10�2�1:9�10�3 �1:4�10�3 �1:4�10�3 �1:6�10�3 �1:9�10�3 �2:5�10�3 �3:7�10�3 �1:0�10�3 �1:7�10�3
0.93 7:12�10�2 4:44�10�2 3:87�10�2 3:84�10�2 4:05�10�2 4:77�10�2 6:83�10�2 2:64�10�2 4:31�10�2�5:2�10�3 �2:91�10�3 �2:5�10�3 �2:6�10�3 �3:0�10�3 �3:8�10�3 �6:0�10�3 �1:7�10�3 3:3�10�3
0.95 1:54�10�1 8:70�10�2 7:19�10�2 7:05�10�2 7:51�10�2 9:18�10�2 1:41�10�1 5:06�10�2 8:87�10�2�8:0�10�3 �4:0�10�3 �3:6�10�3 �3:9�10�3 �4:8�10�3 �7:0�10�3 �1:3�10�2 �3:3�10�3 6:4�10�3
0.97 2:93�10�1 1:51�10�1 1:17�10�1 1:13�10�1 1:20�10�1 1:51�10�1 2:45�10�1 8:13�10�2 1:62�10�1�1:4�10�2 �6:1�10�3 �4:9�10�3 �5:5�10�3 �7:0�10�3 �1:1�10�2 2:06�10�2 �4:2�10�3 1:2�10�2
0.98 4:36�10�1 2:11�10�1 1:58�10�1 1:51�10�1 1:64�10�1 2:15�10�1 3:70�10�1 1:13�10�1 2:56�10�1�1:7�10�2 �8:0�10�3 �5:63�10�3 �5:4�10�3 �6:1�10�3 �8:7�10�3 1:53�10�2 4:24�10�3 1:21�10�2
n(x) 1537 6147 38416 38416 6147 1537

Interval (76 min.) (307 min.) (1920 min.) (1920 min.) (307 min.) (76 min.)

Table A.22: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=H2=100 queueing model with � = 0:1 and a mean service time of
5 minutes. Sample sizes needed and length of estimation intervals required are also included. The
ASE’s are measured in units of mean service time squared per customer.

Efficiency in the M(t)=H2=100 model with � = 0:5 and E[S] = 5 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 4.83 1.62 0.835 0.696 0.825 1.55 3.46 0.550 17.9�5:5�10�2 �3:4�10�2 �2:5�10�2 �2:4�10�2 �3:1�10�2 �5:3�10�2 �0:11 �1:7�10�2 �0:42
0.93 6.49 2.11 1.04 0.856 1.04 1.92 4.70 0.666 29.0�7:3�10�2 �4:5�10�2 �3:6�10�2 �3:6�10�2 �4:3�10�2 �6:1�10�2 �0:10 �2:5�10�2 �0:44
0.95 7.77 2.45 1.15 0.919 1.14 2.19 5.53 0.728 38.6�0:21 �9:8�10�2 �4:5�10�2 �2:7�10�2 �4:7�10�2 �9:9�10�2 �0:20 �2:7�10�2 �0:81
0.97 9.17 2.85 1.29 1.01 1.26 2.50 6.45 0.789 50.3

0.19 0.11 �6:3�10�2 �4:7�10�2 �6:1�10�2 �0:12 �0:23 �3:6�10�2 0.95

0.98 9.71 2.91 1.29 1.03 1.35 2.77 7.17 0.8196 57.9�0:16 �0:66 �0:30 �0:24 �0:31 �0:63 �1:6 �0:19 �13
n(x) 1537 6147 38416 38416 6147 1537

Interval (76 min.) (307 min.) (1920 min.) (1920 min.) (307 min.) (76 min.)

Table A.23: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=H2=100 queueing model with � = 0:5 and mean service time of 5
minutes. Sample sizes needed and length of estimation intervals required are also included. The
ASE’s are measured in units of mean service time squared per customer.
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Efficiency in the M(t)=D=100 model with � = 0:1 and E[S] = 5 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 4:34�10�3 3:29�10�3 2:98�10�3 2:88�10�3 2:85�10�3 2:93�10�3 3:34�10�3 1:01�10�3 3:02�10�3�2:3�10�4 �1:3�10�4 �1:1�10�4 �1:1�10�4 �1:2�10�4 �1:45�10�4 �2:26�10�4 2:97�10�5 �1:1�10�4
0.93 2:32�10�2 1:23�10�2 9:50�10�3 8:88�10�3 9:14�10�3 1:10�10�2 1:71�10�2 1:20�10�3 9:79�10�3�1:4�10�3 �4:8�10�4 �3:1�10�4 �3:3�10�4 �4:4�10�4 0.000750349 0.001581422 3:74�10�5 5:0�10�4
0.95 7:02�10�2 2:94�10�2 1:90�10�2 1:68�10�2 1:80�10�2 2:51�10�2 4:89�10�2 1:30�10�3 2:32�10�2�8:4�10�4 �3:8�10�4 �2:7�10�4 �2:6�10�4 �3:3�10�4 �5:9�10�4 �1:3�10�3 �3:7�10�5 �4:4�10�4
0.97 0.178 6:27�10�2 3:41�10�2 2:86�10�2 3:27�10�2 5:43�10�2 0.124 1:27�10�3 6:02�10�2�6:0�10�3 �1:9�10�3 �8:7�10�4 �8:1�10�4 �1:3�10�3 �2:5�10�3 �5:7�10�3 5.6�10�5 �3:2�10�3
0.98 0.250 8:53�10�2 4:32�10�2 3:45�10�2 3:92�10�2 6:84�10�2 0:170 1:28�10�3 8:66�10�2�3:4�10�3 �1:1�10�3 �4:8�10�4 �4:3�10�4 �5:7�10�4 �9:1�10�4 �1:9�10�3 �6:6�10�5 �1:6�10�3
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.24: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=D=100 queueing model with � = 0:1 and E[S] = 5 minutes. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.

Efficiency in the M(t)=D=100 model with � = 0:5 and E[S] = 5 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 4.23 1.08 0.298 0.149 0.260 0.852 2.77 1:37�10�3 16.5�4:1�10�2 �1:6�10�2 �5:2�10�3 �3:3�10�3 �8:2�10�3 �1:6�10�2 �2:6�10�2 �4:8�10�5 �8:6�10�2
0.93 5.79 1.44 0.370 0.184 0.363 1.23 3.97 1:32�10�3 27.9�9:2�10�2 �4:2�10�2 �1:3�10�2 �6:9�10�3 �2:6�10�2 �5:6�10�2 �0:11 �4:6�10�5 �0:40
0.95 7.03 1.75 0.437 0.198 0.3991 1.42 4.69 1:39�10�3 37.2�2:1�10�2 �9:3�10�3 �7:5�10�3 �7:9�10�3 �8:6�10�3 �1:0�10�2 �1:4�10�2 �6:0�10�5 �0:12
0.97 8.40 2.09 0.514 0.215 0.4386 1.62 5.47 1:39�10�3 48.3�7:0�10�2 �3:2�10�2 �1:3�10�2 �3:8�10�3 �9:2�10�3 �2:3�10�2 �4:6�10�2 �8:6�10�5 �0:22
0.98 9.02 2.22 0.531 0.217 0.468 1.76 5.94 1:37�10�3 54.8�7:2�10�2 �3:4�10�2 �1:4�10�2 �5:5�10�3 �1:2�10�2 �2:9�10�2 �5:5�10�2 �7:9�10�5 �0:16
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.25: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=D=100 queueing model with � = 0:5 and E[S] = 5 minutes. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.
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Efficiency in the M(t)=M=100 model with � = 0:1 and E[S] = 30 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 5:48�10�3 4:57�10�3 4:34�10�3 4:29�10�3 4:32�10�3 4:49�10�3 5:04�10�3 2:26�10�3 4:61�10�3�1:1�10�4 �9:0�10�5 �8:7�10�5 �8:8�10�5 �9:1�10�5 �9:9�10�5 �1:2�10�4 �5:1�10�5 �9:8�10�5
0.93 1:02�10�2 7:95�10�3 7:39�10�3 7:29�10�3 7:39�10�3 7:84�10�3 9:28�10�3 3:77�10�3 8:04�10�3�2:9�10�4 �2:1�10�4 �2:1�10�4 �2:1�10�4 �2:3�10�4 �2:6�10�4 �3:6�10�4 �1:0�10�4 �2:6�10�4
0.95 1:54�10�2 1:13�10�2 1:02�10�2 1:01�10�2 1:02�10�2 1:10�10�2 1:37�10�2 5:08�10�3 1:17�10�2�1:8�10�4 �1:4�10�4 �1:4�10�4 �1:5�10�4 �1:6�10�4 �1:9�10�4 �2:7�10�4 �7:2�10�5 �2:0�10�4
0.97 2:42�10�2 1:64�10�2 1:44�10�2 1:41�10�2 1:44�10�2 1:60�10�2 2:10�10�2 7:16�10�3 1:75�10�2�2:9�10�4 �2:0�10�4 �1:9�10�4 �2:0�10�4 �2:2�10�4 �2:6�10�4 �3:9�10�4 �9:8�10�5 �2:4�10�4
0.98 3:41�10�2 2:16�10�2 1:85�10�2 1:80�10�2 1:85�10�2 2:10�10�2 2:88�10�2 9:14�10�3 2:39�10�2�1:3�10�3 �6:9�10�4 �5:7�10�4 �5:9�10�4 �6:6�10�4 �8:8�10�4 �1:5�10�3 �3:0�10�4 �1:0�10�3
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.26: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �, and
alternative x , in the M(t)=M=100 queueing model with � = 0:1 and E[S] = 30 minutes. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.

Efficiency in the M(t)=H2=100 model with � = 0:1 and E[S] = 30 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 9:08�10�3 7:89�10�3 7:85�10�3 8:06�10�3 8:42�10�3 9:22�10�3 1:11�10�2 4:92�10�3 8:65�10�3�3:3�10�4 �3:3�10�4 �3:6�10�4 �4:0�10�4 �4:4�10�4 �5:1�10�4 �6:7�10�4 �2:4�10�4 �4:5�10�4
0.93 1:53�10�2 1:25�10�2 1:22�10�2 1:24�10�2 1:30�10�2 1:45�10�2 1:81�10�2 7:73�10�3 1:41�10�2�3:5�10�4 �3:0�10�4 �3:3�10�4 �3:6�10�4 �3:9�10�4 �4:7�10�4 �6:1�10�4 �2:5�10�4 �4:1�10�4
0.95 2:52�10�2 1:92�10�2 1:83�10�2 1:87�10�2 1:97�10�2 2:22�10�2 2:87�10�2 1:20�10�2 2:23�10�2�9:1�10�4 �6:7�10�4 �6:8�10�4 �7:4�10�4 �8:4�10�4 �1:0�10�3 �1:5�10�3 �6:5�10�4 �9:7�10�4
0.97 4:37�10�2 3:02�10�2 2:75�10�2 2:77�10�2 2:91�10�2 3:33�10�2 4:50�10�2 1:79�10�2 3:53�10�2�2:9�10�3 �1:8�10�3 �1:60�10�3 �1:7�10�3 �1:9�10�3 �2:4�10�3 �3:62�10�3 1:25�10�3 2:28�10�3
0.98 8:33�10�2 5:15�10�2 4:48�10�2 4:46�10�2 4:74�10�2 5:63�10�2 8:13�10�2 3:03�10�2 6:24�10�2�7:8�10�3 �3:8�10�3 �3:1�10�3 �3:2�10�3 �3:6�10�3 �5:0�10�3 �8:7�10�3 �2:3�10�3 �5:8�10�3
n(x) 1537 6147 38416 38416 6147 1537

Interval (76 min.) (307 min.) (1920 min.) (1920 min.) (307 min.) (76 min.)

Table A.27: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �, and
alternative x , in the M(t)=H2=100 queueing model with � = 0:1 and E[S] = 30 minutes. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.
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Efficiency in the M(t)=D=100 model with � = 0:1 and E[S] = 30 min
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 3:11�10�3 2:56�10�3 2:38�10�3 2:31�10�3 2:28�10�3 2:29�10�3 2:44�10�3 9:72�10�4 2:47�10�3�5:1�10�5 �3:8�10�5 �3:4�10�5 �3:4�10�5 �3:3�10�5 �3:5�10�5 �4:1�10�5 �2:5�10�5 �3:6�10�5
0.93 5:94�10�3 4:42�10�3 3:97�10�3 3:84�10�3 3:81�10�3 4:02�10�3 4:60�10�3 1:23�10�3 4:18�10�3�1:1�10�4 �7:2�10�5 �6:3�10�5 �6:3�10�5 �6:5�10�5 �7:6�10�5 �1:1�10�4 �2:4�10�5 �7:8�10�5
0.95 9:21�10�3 6:23�10�3 5:41�10�3 5:19�10�3 5:20�10�3 5:60�10�3 7:05�10�3 1:31�10�3 6:01�10�3�4:6�10�5 �3:9�10�5 �4:0�10�5 �4:1�10�5 �4:3�10�5 �4:6�10�5 �5:4�10�5 �2:7�10�5 �4:1�10�5
0.97 1:51�10�2 9:21�10�3 7:64�10�3 7:26�10�3 7:34�10�3 8:21�10�3 1:13�10�2 1:35�10�3 9:29�10�3�9:7�10�5 �7:5�10�5 �6:8�10�5 �6:5�10�5 �6:5�10�5 �6:9�10�5 �9:1�10�5 �2:6�10�5 �3:8�10�5
0.98 1:90�10�2 1:10�10�2 8:84�10�3 8:29�10�3 8:37�10�3 9:45�10�3 1:36�10�2 1:34�10�3 1:13�10�2�1:0�10�4 �6:6�10�5 �5:8�10�5 �5:7�10�5 �6:3�10�5 �8:3�10�5 �1:4�10�4 �4:2�10�5 �6:9�10�5
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.28: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �, and
alternative x , in the M(t)=D=100 queueing model with � = 0:1 and E[S] = 30 minutes. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.

Efficiency in the M(t)=M=100 model with � = 0:5 and E[S] = 6 hours
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 5:18�10�3 4:48�10�3 4:30�10�3 4:26�10�3 4:29�10�3 4:41�10�3 4:84�10�3 2:24�10�3 9:00�10�3�4:7�10�5 �4:8�10�5 �5:2�10�5 �5:6�10�5 �6:0�10�5 �6:7�10�5 �8:0�10�5 �2:4�10�5 �1:6�10�4
0.93 6:94�10�3 5:84�10�3 5:57�10�3 5:53�10�3 5:57�10�3 5:80�10�3 6:51�10�3 2:85�10�3 1:43�10�2�7:6�10�5 �7:0�10�5 �7:2�10�5 �7:5�10�5 �7:9�10�5 �8:7�10�5 �1:0�10�4 �3:7�10�5 �2:4�10�4
0.95 9:07�10�3 7:35�10�3 6:94�10�3 6:87�10�3 6:96�10�3 7:32�10�3 8:46�10�3 3:52�10�3 2:19�10�2�1:6�10�4 �1:3�10�4 �1:3�10�4 �1:4�10�4 �1:5�10�4 �1:8�10�4 �2:5�10�4 �4:8�10�5 �6:5�10�4
0.97 1:39�10�2 1:04�10�2 9:58�10�3 9:44�10�3 9:59�10�3 1:03�10�2 1:25�10�2 4:80�10�3 3:86�10�2�4:9�10�4 �2:7�10�4 �2:4�10�4 �2:6�10�4 �3:0�10�4 �3:9�10�4 �6:4�10�4 �1:2�10�4 �1:4�10�3
0.98 2:04�10�2 1:42�10�2 1:27�10�2 1:24�10�2 1:26�10�2 1:38�10�2 1:76�10�2 6:34�10�3 5:97�10�2�8:5�10�4 �4:7�10�4 �4:0�10�4 �4:1�10�4 �4:5�10�4 �5:8�10�4 �9:4�10�4 �2:2�10�4 �2:8�10�4
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.29: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=M=100 queueing model with � = 0:5 and E[S] = 6 hours. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.
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Efficiency in the M(t)=H2=100 model with � = 0:5 and E[S] = 6 hours
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 6:21�10�3 5:50�10�3 5:40�10�3 5:44�10�3 5:56�10�3 5:87�10�3 6:64�10�3 3:19�10�3 1:30�10�2�1:2�10�4 �1:3�10�4 �1:5�10�4 �1:6�10�4 �1:8�10�4 �2:1�10�4 �2:8�10�4 �1:1�10�4 �6:0�10�4
0.93 9:72�10�3 8:31�10�3 8:13�10�3 8:24�10�3 8:51�10�3 9:17�10�3 1:08�10�2 4:93�10�3 2:49�10�2�2:5�10�4 �2:4�10�4 �2:6�10�4 �2:8�10�4 �3:1�10�4 �3:6�10�4 �4:7�10�4 �1:6�10�4 �9:1�10�4
0.95 1:58�10�2 1:27�10�2 1:23�10�2 1:26�10�2 1:31�10�2 1:46�10�2 1:82�10�2 7:67�10�3 4:35�10�2�7:6�10�4 �5:9�10�4 �6:1�10�4 �6:6�10�4 �7:4�10�4 �9:1�10�4 �1:3�10�3 �4:9�10�4 �1:3�10�3
0.97 3:15�10�2 2:26�10�2 2:09�10�2 2:10�10�2 2:20�10�2 2:50�10�2 3:27�10�2 1:36�10�2 7:65�10�2�2:2�10�3 �1:5�10�3 �1:4�10�4 �1:4�10�3 �1:6�10�3 �1:9�10�3 �2:8�10�3 �1:03�10�3 �3:2�10�3
0.98 6:63�10�2 4:18�10�2 3:68�10�2 3:67�10�2 3:90�10�2 4:61�10�2 6:61�10�2 2:47�10�2 1:13�10�1�9:1�10�3 �4:2�10�3 �3:4�10�3 �3:6�10�3 �4:2�10�3 �6:1�10�3 �1:1�10�2 �2:8�10�3 �4:6�10�3
n(x) 1537 6147 38416 38416 6147 1537

Interval (76 min.) (307 min.) (1920 min.) (1920 min.) (307 min.) (76 min.)

Table A.30: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=H2=100 queueing model with � = 0:5 and E[S] = 6 hours. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.

Efficiency in the M(t)=D=100 model with � = 0:5 and E[S] = 6 hours
HOLm(x)� x = 0.1 x = 0.05 x = 0.02 HOLm x = -0.02 x = -0.05 x = -0.1 QL HOL

0.9 7:29�10�3 6:06�10�3 5:65�10�3 5:49�10�3 5:42�10�3 5:42�10�3 5:72�10�3 3:08�10�3 1:06�10�2�1:4�10�5 �1:3�10�5 �1:5�10�5 �1:6�10�5 �1:7�10�5 �1:9�10�5 �2:3�10�5 �1:3�10�5 �4:8�10�5
0.93 8:50�10�3 6:93�10�3 6:43�10�3 6:25�10�3 6:17�10�3 6:22�10�3 6:69�10�3 3:377�10�3 1:43�10�2�6:0�10�5 �5:3�10�5 �5:1�10�5 �5:0�10�5 �4:9�10�5 �4:8�10�5 �4:9�10�5 �2:7�10�5 �6:6�10�5
0.95 9:40�10�3 7:52�10�3 6:93�10�3 6:72�10�3 6:64�10�3 6:73�10�3 7:34�10�3 3:52�10�3 1:76�10�2�4:7�10�5 �3:8�10�5 �3:5�10�5 �3:4�10�5 �3:4�10�5 �3:5�10�5 �4:1�10�5 �2:3�10�5 �1:1�10�4
0.97 1:09�10�2 8:34�10�3 7:57�10�3 7:32�10�3 7:25�10�3 7:45�10�3 8:43�10�3 3:49�10�3 2:49�10�2�4:4�10�5 �3:0�10�5 �2:7�10�5 �2:6�10�5 �2:8�10�5 �3:3�10�5 �5:0�10�5 �3:6�10�5 �2:9�10�4
0.98 1:27�10�2 9:20�10�3 8:19�10�3 7:88�10�3 7:83�10�3 8:18�10�3 9:67�10�3 3:36�10�3 3:40�10�2�1:4�10�4 �8:3�10�5 �7:4�10�5 �7:7�10�5 �8:6�10�5 �1:1�10�4 �1:8�10�4 �4:9�10�5 �8:9�10�4
n(x) 385 1537 9604 9604 1537 385

Interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table A.31: Performance of HOLm(x) delay predictors, as a function of the traffic intensity, �,
and alternative x , in the M(t)=D=100 queueing model with � = 0:5 and E[S] = 6 hours. Sample
sizes needed and length of estimation intervals required are also included. The ASE’s are measured
in units of mean service time squared per customer.



Chapter A. Additional Simulation Results 256

10 20 30 40 50 60 70

0.8

1

1.2

1.4

1.6

1.8

2

Average number of servers

A
ve

ra
ge

 n
um

be
r 

of
 s

er
ve

rs
 ×

 A
S

E

Average number of servers × ASE 
in the M(t)/M/s(t)+H

2
 model with a small number of servers

 

 

QL
rt

HOL
rt

NIF

QLm
a

HOLm
a

Figure A.1: �s � ASE of the alternative predictors in the M(t)=M=s(t) + H2 model for �(t) in
(5.27) and s(t) in (5.28), and a small average number of servers, �s. We let 
a = 
s = 1:57 which
corresponds to E[S] = 6 hours with a 24 hour arrival-rate cycle.
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Figure A.2: �s � ASE of the alternative predictors in the M(t)=M=s(t) + H2 model for �(t) in
(5.27) and s(t) in (5.28), and a large average number of servers, �s. We let 
a = 
s = 1:57 which
corresponds to E[S] = 6 hours with a 24 hour arrival-rate cycle.
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Figure A.3: �s � ASE of the alternative predictors in the M(t)=M=s(t) + E10 model for �(t) in
(5.27) and s(t) in (5.28), and a small average number of servers, �s. We let 
a = 
s = 1:57 which
corresponds to E[S] = 6 hours with a 24 hour arrival-rate cycle.
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Figure A.4: �s � ASE of the alternative predictors in the M(t)=M=s(t) + E10 model for �(t) in
(5.27) and s(t) in (5.28), and a large average number of servers, �s. We let 
a = 
s = 1:57 which
corresponds to E[S] = 6 hours with a 24 hour arrival-rate cycle.
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ASE of the predictors in the M(t)=M=s(t) +H2 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 8:78�10�2 1:12�10�1 1:26�10�1 8:00�10�2 1:00�10�1 1:14�10�1 1:34�10�1�3:2�10�3 �3:2�10�3 �5:1�10�3 �4:9�10�3 �4:3�10�3 �3:9�10�3 �5:2�10�3
20 3:66�10�2 4:83�10�2 5:79�10�2 4:41�10�2 5:45�10�2 5:89�10�2 6:99�10�2�1:2�10�3 �2:0�10�3 �3:1�10�3 �2:1�10�3 �2:7�10�3 �1:9�10�3 �2:9�10�3
30 2:29�10�2 3:05�10�2 3:85�10�2 3:28�10�2 3:93�10�2 4:27�10�2 4:95�10�2�9:3�10�4 �1:2�10�3 �1:4�10�3 �1:5�10�3 �1:5�10�3 �1:3�10�3 �1:7�10�3
50 1:32�10�2 1:79�10�2 2:43�10�2 2:53�10�2 2:95�10�2 3:24�10�2 3:68�10�2�5:3�10�4 �4:6�10�4 �1:3�10�3 �1:0�10�3 �1:0�10�3 �8:9�10�4 �1:1�10�3
70 9:14�10�3 1:23�10�2 1:73�10�2 2:09�10�2 2:40�10�2 2:69�10�2 3:02�10�2�3:3�10�4 �3:3�10�4 �7:2�10�4 �7:4�10�4 �6:3�10�4 �6:4�10�4 �7:2�10�4

100 6:15�10�3 8:49�10�3 1:24�10�2 1:83�10�2 2:03�10�2 2:34�10�2 2:54�10�2�2:0�10�4 �4:0�10�4 �6:2�10�4 �7:0�10�4 �8:1�10�4 �6:6�10�4 �8:2�10�4
300 2:05�10�3 2:80�10�3 4:42�10�3 1:44�10�2 1:51�10�2 1:84�10�2 1:90�10�2�5:4�10�5 �5:4�10�5 �1:9�10�4 �2:9�10�4 �2:4�10�4 �2:3�10�4 �3:1�10�4
500 1:25�10�3 1:73�10�3 2:63�10�3 1:36�10�2 1:41�10�2 1:74�10�2 1:78�10�2�3:2�10�5 �4:7�10�5 �1:1�10�4 �2:0�10�4 �2:4�10�4 �1:8�10�4 �2:6�10�4
700 8:70�10�4 1:21�10�3 1:84�10�3 1:32�10�2 1:34�10�2 1:68�10�2 1:70�10�2�4:0�10�5 �4:9�10�5 �9:0�10�5 �2:3�10�4 �2:5�10�4 �2:3�10�4 �2:5�10�4

1000 6:02�10�4 8:31�10�4 1:31�10�3 1:29�10�2 1:30�10�2 1:64�10�2 1:65�10�2�2:1�10�5 �1:5�10�5 �5:3�10�5 �1:7�10�4 �1:6�10�4 �1:3�10�4 �2:0�10�4
Table A.32: Performance of the alternative predictors, as a function of �s, in the M(t)=M=s(t)+H2
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE of the predictors in the M(t)=M=s(t) + E10 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 1:06�10�1 1:38�10�1 1:48�10�1 9:38�10�2 1:06�10�1 1:19�10�1 1:28�10�1�5:7�10�3 �6:0�10�3 �6:3�10�3 �3:1�10�3 �3:2�10�3 �3:9�10�3 �4:3�10�3
20 5:71�10�2 6:99�10�2 8:85�10�2 5:79�10�2 6:40�10�2 6:81�10�2 7:34�10�2�3:4�10�3 �3:9�10�3 �4:7�10�3 �2:7�10�3 �2:9�10�3 �2:5�10�3 �2:7�10�3
30 3:76�10�2 4:65�10�2 6:17�10�2 4:31�10�2 4:77�10�2 4:95�10�2 5:33�10�2�1:5�10�3 �2:3�10�3 �2:0�10�3 �1:8�10�3 �1:7�10�3 �1:7�10�3 �1:7�10�3
50 2:32�10�2 2:73�10�2 4:04�10�2 3:50�10�2 3:74�10�2 3:93�10�2 4:14�10�2�1:6�10�3 �1:4�10�3 �2:6�10�3 �8:9�10�4 �9:6�10�4 �8:6�10�4 �9:6�10�4
70 1:80�10�2 2:00�10�2 3:18�10�2 3:04�10�2 3:21�10�2 3:39�10�2 3:51�10�2�7:6�10�4 �8:0�10�4 �1:1�10�3 �8:8�10�4 �9:1�10�4 �7:4�10�4 �8:4�10�4

100 1:29�10�2 1:41�10�2 2:35�10�2 2:89�10�2 3:00�10�2 3:14�10�2 3:22�10�2�5:0�10�4 �3:8�10�4 �1:3�10�3 �5:0�10�4 �6:5�10�4 �4:9�10�4 �5:1�10�4
300 4:64�10�3 4:91�10�3 8:81�10�3 2:41�10�2 2:42�10�2 2:56�10�2 2:57�10�2�2:3�10�4 �2:4�10�4 �3:9�10�4 �2:1�10�4 �2:7�10�4 �2:3�10�4 �2:4�10�4
500 2:78�10�3 2:93�10�3 5:14�10�3 2:33�10�2 2:32�10�2 2:45�10�2 2:44�10�2�1:0�10�4 �1:2�10�4 �2:3�10�4 �1:5�10�4 �1:1�10�4 �1:8�10�4 �1:2�10�4
700 1:95�10�3 2:00�10�3 3:46�10�3 2:30�10�2 2:30�10�2 2:42�10�2 2:41�10�2�6:5�10�5 �7:8�10�5 �2:1�10�4 �2:4�10�4 �3:0�10�4 �2:5�10�4 �2:9�10�4

1000 1:34�10�3 1:44�10�3 2:48�10�3 2:26�10�2 2:24�10�2 2:38�10�2 2:36�10�2�6:0�10�5 �6:1�10�5 �1:0�10�4 �1:5�10�4 �2:1�10�4 �1:3�10�4 �1:7�10�4
Table A.33: Performance of the alternative predictors, as a function of �s, in the M(t)=M=s(t)+E10
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE of the predictors in the M(t)=M=s(t) +M model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 1:07�10�1 1:30�10�1 1:68�10�1 9:60�10�2 1:24�10�1 1:01�10�1 1:28�10�1�5:4�10�3 �5:9�10�3 �8:9�10�3 �4:3�10�3 �6:3�10�3 �4:1�10�3 �6:0�10�3
30 2:75�10�2 3:49�10�2 5:13�10�2 4:10�10�2 5:01�10�2 4:63�10�2 5:51�10�2�1:6�10�3 �1:3�10�3 �2:6�10�3 �1:9�10�3 �2:3�10�3 �2:0�10�3 �2:5�10�3
50 1:55�10�2 1:97�10�2 3:19�10�2 3:20�10�2 3:72�10�2 3:72�10�2 4:23�10�2�5:5�10�4 �7:7�10�4 �9:2�10�4 �1:4�10�3 �1:9�10�3 �1:6�10�3 �2:0�10�3
70 1:08�10�2 1:39�10�2 2:30�10�2 2:82�10�2 3:17�10�2 3:36�10�2 3:69�10�2�2:5�10�4 �5:3�10�4 �8:6�10�4 �8:0�10�4 �1:1�10�3 �9:0�10�4 �1:1�10�3

100 7:16�10�3 9:27�10�3 1:57�10�2 2:46�10�2 2:68�10�2 3:00�10�2 3:22�10�2�2:0�10�4 �1:6�10�4 �5:2�10�4 �3:8�10�4 �4:4�10�4 �4:4�10�4 �5:0�10�4
300 2:50�10�3 3:21�10�3 5:63�10�3 2:13�10�2 2:19�10�2 2:70�10�2 2:75�10�2�5:6�10�5 �9:7�10�5 �2:1�10�4 �4:1�10�4 �4:1�10�4 �4:4�10�4 �4:5�10�4
500 1:48�10�3 1:91�10�3 3:44�10�3 2:03�10�2 2:08�10�2 2:61�10�2 2:65�10�2�3:6�10�5 �6:5�10�5 �1:1�10�4 �2:1�10�4 �2:5�10�4 �2:1�10�4 �2:4�10�4
700 1:04�10�3 1:38�10�3 2:48�10�3 1:99�10�2 2:01�10�2 2:57�10�2 2:58�10�2�2:1�10�5 �1:9�10�5 �6:5�10�5 �1:5�10�4 �2:2�10�4 �1:7�10�4 �2:4�10�4

1000 7:30�10�4 9:79�10�4 1:77�10�3 1:95�10�2 1:96�10�2 2:53�10�2 2:53�10�2�2:0�10�5 �2:0�10�5 �6:2�10�5 �2:1�10�4 �2:8�10�4 �2:3�10�4 �2:9�10�4
Table A.34: Performance of the alternative predictors, as a function of �s, in the M(t)=M=s(t)+M
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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Figure A.5: ASE of QLa, QLsma , and QLma in the M(t)=M=s(t) +M model for �(t) in (5.27) and
s(t) in (5.28), and a small average number of servers, �s. We let 
a = 
s = 0:022 which corresponds
to E[S] = 5 minutes with a 24 hour arrival-rate cycle.
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Figure A.6: ASE of QLa, QLsma , and QLma in the M(t)=M=s(t) +M model for �(t) in (5.27) and
s(t) in (5.28), and a large average number of servers, �s. We let 
a = 
s = 0:022 which corresponds
to E[S] = 5 minutes with a 24 hour arrival-rate cycle.
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Figure A.7: ASE of QLa, QLsma , and QLma in the M(t)=M=s(t) +M model for �(t) in (5.27) and
s(t) in (5.28), and a small average number of servers, �s. We let 
a = 
s = 1:57 which corresponds
to E[S] = 6 hours with a 24 hour arrival-rate cycle.
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Figure A.8: ASE of QLa, QLsma , and QLma in the M(t)=M=s(t) +M model for �(t) in (5.27) and
s(t) in (5.28), and a large average number of servers, �s. We let 
a = 
s = 1:57 which corresponds
to E[S] = 6 hours with a 24 hour arrival-rate cycle.
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ASE of the predictors in the M(t)=H2=s(t) +H2 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 2:07�10�1 2:34�10�1 2:86�10�1 2:01�10�1 2:23�10�1 2:55�10�1 2:76�10�1�3:4�10�2 �3:0�10�2 �5:0�10�2 �4:0�10�2 �3:4�10�2 �3:4�10�2 �4:0�10�2
20 7:05�10�2 8:39�10�2 1:10�10�1 8:88�10�2 1:02�10�1 1:11�10�1 1:25�10�1�1:6�10�2 �1:5�10�2 �2:9�10�2 �2:1�10�2 �2:2�10�2 �1:9�10�2 �2:4�10�2
30 3:91�10�2 4:84�10�2 6:85�10�2 5:94�10�2 6:75�10�2 7:53�10�2 8:41�10�2�7:1�10�3 �7:7�10�3 �1:1�10�2 �1:3�10�2 �1:2�10�2 �1:1�10�2 �1:4�10�2
50 2:49�10�2 3:11�10�2 4:56�10�2 4:49�10�2 4:96�10�2 5:63�10�2 6:09�10�2�4:0�10�3 �4:7�10�3 �7:0�10�3 �7:1�10�3 �7:1�10�3 �6:5�10�3 �7:7�10�3
70 1:89�10�2 2:15�10�2 3:39�10�2 3:79�10�2 4:01�10�2 4:79�10�2 5:01�10�2�3:5�10�3 �3:7�10�3 �4:9�10�3 �7:3�10�3 �6:7�10�3 �6:5�10�3 �7:5�10�3

100 1:25�10�2 1:55�10�2 2:51�10�2 3:10�10�2 3:32�10�2 3:99�10�2 4:20�10�2�1:1�10�3 �1:3�10�3 �2:0�10�3 �3:0�10�3 �2:8�10�3 �2:7�10�3 �3:1�10�3
300 6:75�10�3 7:80�10�3 1:49�10�2 2:55�10�2 2:59�10�2 3:31�10�2 3:34�10�2�4:9�10�4 �5:3�10�4 �8:8�10�4 �1:5�10�3 �1:4�10�3 �1:3�10�3 �1:5�10�3
500 5:31�10�3 5:77�10�3 1:12�10�2 2:32�10�2 2:31�10�2 3:04�10�2 3:02�10�2�4:4�10�4 �3:8�10�4 �5:6�10�4 �1:4�10�3 �1:2�10�3 �1:3�10�3 �1:4�10�3
700 4:67�10�3 5:18�10�3 1:04�10�2 2:26�10�2 2:25�10�2 2:97�10�2 2:95�10�2�1:9�10�4 �2:3�10�4 �4:2�10�4 �9:3�10�4 �7:6�10�4 �8:2�10�4 �8:7�10�4

1000 4:11�10�3 4:52�10�3 9:16�10�3 2:20�10�2 2:19�10�2 2:90�10�2 2:87�10�2�2:0�10�4 �1:5�10�4 �2:8�10�4 �7:9�10�4 �6:8�10�4 �6:7�10�4 �7:8�10�4
Table A.35: Performance of the alternative predictors, as a function of �s, in the M(t)=H2=s(t)+H2
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE of the predictors in the M(t)=E10=s(t) +H2 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 4:95�10�2 6:86�10�2 6:92�10�2 3:17�10�2 4:80�10�2 4:82�10�2 6:39�10�2�2:4�10�3 �2:5�10�3 �3:6�10�3 �1:8�10�3 �1:7�10�3 �1:3�10�3 �2:4�10�3
20 2:26�10�2 2:83�10�2 3:41�10�2 1:34�10�2 2:07�10�2 1:90�10�2 2:66�10�2�7:8�10�4 �1:1�10�3 �1:2�10�3 �5:6�10�4 �8:7�10�4 �4:9�10�4 �9:5�10�4
30 1:56�10�2 1:87�10�2 2:58�10�2 9:19�10�3 1:42�10�2 1:27�10�2 1:80�10�2�3:3�10�4 �3:0�10�4 �6:6�10�4 �3:0�10�4 �3:3�10�4 �2:3�10�4 �4:3�10�4
50 1:05�10�2 1:16�10�2 1:99�10�2 6:09�10�3 8:96�10�3 8:41�10�3 1:13�10�2�2:8�10�4 �2:2�10�4 �5:8�10�4 �2:1�10�4 �2:6�10�4 �1:7�10�4 �3:2�10�4
70 8:45�10�3 8:89�10�3 1:62�10�2 5:01�10�3 7:23�10�3 6:88�10�3 9:13�10�3�2:0�10�4 �1:7�10�4 �4:0�10�4 �1:1�10�4 �1:7�10�4 �6:7�10�5 �2:3�10�4

100 6:91�10�3 6:95�10�3 1:46�10�2 3:95�10�3 5:42�10�3 5:48�10�3 6:94�10�3�1:9�10�4 �2:2�10�4 �3:7�10�4 �1:1�10�4 �1:6�10�4 �1:1�10�4 �1:7�10�4
300 4:48�10�3 4:05�10�3 1:17�10�2 2:60�10�3 3:07�10�3 3:71�10�3 4:15�10�3�8:6�10�5 �6:5�10�5 �9:7�10�5 �4:0�10�5 �6:2�10�5 �3:1�10�5 �8:4�10�5
500 4:06�10�3 3:42�10�3 1:10�10�2 2:27�10�3 2:55�10�3 3:29�10�3 3:56�10�3�2:5�10�5 �4:6�10�5 �6:2�10�5 �4:5�10�5 �4:6�10�5 �3:0�10�5 �6:0�10�5
700 3:84�10�3 3:21�10�3 1:08�10�2 2:17�10�3 2:36�10�3 3:15�10�3 3:34�10�3�4:7�10�5 �3:9�10�5 �9:5�10�5 �1:8�10�5 �2:5�10�5 �1:3�10�5 �3:0�10�5

1000 3:72�10�3 2:99�10�3 1:05�10�2 2:09�10�3 2:23�10�3 3:05�10�3 3:18�10�3�3:9�10�5 �2:8�10�5 �7:4�10�5 �2:5�10�5 �3:7�10�5 �2:7�10�5 �3:2�10�5
Table A.36: Performance of the alternative predictors, as a function of �s, in the M(t)=E10=s(t)+H2
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE of the predictors in the M(t)=H2=s(t) + E10 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 1:17�10�1 1:58�10�1 2:31�10�1 1:35�10�1 1:35�10�1 1:70�10�1 1:76�10�1�2:1�10�2 �2:5�10�2 �4:2�10�2 �3:6�10�2 �2:8�10�2 �4:2�10�2 �3:8�10�2
20 7:84�10�2 8:73�10�2 1:52�10�1 1:04�10�1 9:80�10�2 1:24�10�1 1:22�10�1�1:3�10�2 �1:1�10�2 �2:2�10�2 �1:8�10�2 �1:5�10�2 �2:0�10�2 �1:8�10�2
30 4:98�10�2 5:76�10�2 1:06�10�1 7:09�10�2 7:04�10�2 8:75�10�2 8:80�10�2�9:8�10�3 �9:9�10�3 �2:0�10�2 �1:8�10�2 �1:5�10�2 �1:8�10�2 �1:5�10�2
50 3:02�10�2 3:44�10�2 6:77�10�2 4:74�10�2 4:99�10�2 5:93�10�2 6:19�10�2�5:4�10�3 �6:9�10�3 �1:5�10�2 �7:2�10�3 �8:1�10�3 �7:2�10�3 �8:0�10�3
70 2:61�10�2 2:82�10�2 5:94�10�2 4:22�10�2 4:27�10�2 5:38�10�2 5:42�10�2�1:8�10�3 �2:1�10�3 �8:8�10�3 �4:2�10�3 �3:8�10�3 �5:0�10�3 �4:8�10�3

100 2:14�10�2 2:25�10�2 4:90�10�2 4:24�10�2 4:19�10�2 5:38�10�2 5:33�10�2�3:2�10�3 �3:0�10�3 �6:1�10�3 �5:1�10�3 �5:1�10�3 �5:2�10�3 �5:3�10�3
300 1:30�10�2 1:33�10�2 3:13�10�2 3:25�10�2 3:27�10�2 4:20�10�2 4:20�10�2�2:1�10�3 �1:8�10�3 �3:8�10�3 �1:5�10�3 �1:8�10�3 �1:5�10�3 �1:7�10�3
500 1:32�10�2 1:26�10�2 3:14�10�2 3:12�10�2 3:10�10�2 4:00�10�2 3:96�10�2�1:4�10�3 �1:2�10�3 �3:9�10�3 �9:2�10�4 �1:3�10�3 �9:8�10�4 �1:2�10�3
700 1:37�10�2 1:24�10�2 2:87�10�2 3:10�10�2 3:01�10�2 3:94�10�2 3:84�10�2�1:1�10�3 �7:6�10�4 �2:8�10�3 �1:5�10�3 �1:3�10�3 �1:6�10�3 �1:3�10�3

1000 1:23�10�2 1:14�10�2 2:47�10�2 3:14�10�2 3:08�10�2 4:02�10�2 3:94�10�2�9:5�10�4 �8:7�10�4 �2:1�10�3 �1:1�10�3 �1:2�10�3 �1:1�10�3 �1:3�10�3
Table A.37: Performance of the alternative predictors, as a function of �s, in the M(t)=H2=s(t)+E10
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE of the predictors in the M(t)=E10=s(t) + E10 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 7:19�10�2 1:10�10�1 1:13�10�1 4:36�10�2 6:86�10�2 5:73�10�2 6:91�10�2�1:2�10�2 �1:1�10�2 �1:5�10�2 �2:6�10�3 �4:3�10�3 �4:5�10�3 �4:4�10�3
20 6:60�10�2 6:62�10�2 7:88�10�2 2:75�10�2 3:45�10�2 3:36�10�2 3:75�10�2�9:7�10�3 �6:7�10�3 �7:8�10�3 �2:3�10�3 �1:6�10�3 �3:0�10�3 �3:1�10�3
30 4:33�10�2 4:61�10�2 5:01�10�2 1:93�10�2 2:52�10�2 2:42�10�2 2:79�10�2�6:9�10�3 �4:4�10�3 �4:5�10�3 �1:7�10�3 �1:7�10�3 �2:5�10�3 �2:8�10�3
50 3:60�10�2 3:44�10�2 3:60�10�2 1:56�10�2 1:87�10�2 1:79�10�2 2:02�10�2�5:1�10�3 �2:5�10�3 �4:3�10�3 �4:8�10�4 �7:8�10�4 �1:1�10�3 �1:2�10�3
70 3:46�10�2 3:26�10�2 3:67�10�2 1:44�10�2 1:67�10�2 1:56�10�2 1:71�10�2�5:0�10�3 �4:5�10�3 �5:5�10�3 �5:7�10�4 �6:2�10�4 �9:1�10�4 �1:1�10�3

100 3:00�10�2 2:90�10�2 2:90�10�2 1:29�10�2 1:41�10�2 1:40�10�2 1:49�10�2�2:6�10�3 �2:4�10�3 �2:5�10�3 �5:5�10�4 �6:2�10�4 �5:7�10�4 �4:7�10�4
300 2:54�10�2 2:26�10�2 2:16�10�2 1:01�10�2 1:05�10�2 1:12�10�2 1:15�10�2�2:0�10�3 �1:3�10�3 �1:6�10�3 �2:8�10�4 �4:8�10�4 �2:5�10�4 �3:1�10�4
500 2:19�10�2 2:08�10�2 1:86�10�2 9:65�10�3 9:81�10�3 1:01�10�2 1:03�10�2�1:5�10�3 �1:5�10�3 �1:5�10�3 �1:7�10�4 �3:3�10�4 �2:6�10�4 �2:3�10�4
700 2:23�10�2 2:10�10�2 1:89�10�2 9:42�10�3 9:56�10�3 9:90�10�3 1:00�10�2�8:9�10�4 �7:6�10�4 �7:2�10�4 �1:4�10�4 �1:5�10�4 �1:9�10�4 �2:2�10�4

1000 2:24�10�2 2:09�10�2 1:91�10�2 9:27�10�3 9:36�10�3 9:91�10�3 1:01�10�2�1:1�10�3 �8:5�10�4 �1:0�10�3 �1:4�10�4 �2:9�10�4 �1:4�10�4 �2:2�10�4
Table A.38: Performance of the alternative predictors, as a function of �s, in the M(t)=E10=s(t) +
E10 model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE of the predictors in the M(t)=D=s(t) +H2 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 4:80�10�2 6:38�10�2 6:58�10�2 2:73�10�2 4:23�10�2 4:19�10�2 5:61�10�2�1:4�10�3 �2:1�10�3 �3:0�10�3 �1:9�10�3 �1:7�10�3 �1:6�10�3 �2:1�10�3
20 2:22�10�2 2:78�10�2 3:29�10�2 1:19�10�2 1:90�10�2 1:69�10�2 2:41�10�2�7:9�10�4 �8:6�10�4 �4:7�10�4 �5:0�10�4 �5:1�10�4 �3:9�10�4 �6:6�10�4
30 1:60�10�2 1:86�10�2 2:56�10�2 8:29�10�3 1:29�10�2 1:15�10�2 1:62�10�2�4:3�10�4 �4:9�10�4 �5:1�10�4 �3:6�10�4 �4:4�10�4 �2:9�10�4 �5:1�10�4
50 1:16�10�2 1:23�10�2 2:04�10�2 5:74�10�3 8:44�10�3 7:69�10�3 1:04�10�2�5:0�10�4 �5:1�10�4 �4:2�10�4 �1:9�10�4 �2:7�10�4 �1:9�10�4 �2:7�10�4
70 1:01�10�2 1:00�10�2 1:80�10�2 4:76�10�3 6:74�10�3 6:37�10�3 8:35�10�3�3:1�10�4 �3:3�10�4 �4:0�10�4 �1:6�10�4 �2:1�10�4 �1:3�10�4 �2:5�10�4

100 8:64�10�3 8:12�10�3 1:66�10�2 3:88�10�3 5:30�10�3 5:23�10�3 6:63�10�3�2:8�10�4 �1:7�10�4 �3:0�10�4 �1:2�10�4 �1:7�10�4 �1:1�10�4 �1:8�10�4
300 6:73�10�3 5:86�10�3 1:43�10�2 2:70�10�3 3:18�10�3 3:64�10�3 4:11�10�3�8:1�10�5 �7:2�10�5 �8:1�10�5 �4:4�10�5 �4:0�10�5 �4:1�10�5 �4:5�10�5
500 6:25�10�3 5:18�10�3 1:36�10�2 2:41�10�3 2:67�10�3 3:29�10�3 3:56�10�3�6:0�10�5 �6:7�10�5 �1:0�10�4 �3:9�10�5 �6:5�10�5 �4:2�10�5 �6:3�10�5
700 6:11�10�3 5:06�10�3 1:35�10�2 2:33�10�3 2:53�10�3 3:18�10�3 3:36�10�3�1:0�10�4 �5:6�10�5 �1:1�10�4 �3:1�10�5 �4:0�10�5 �2:7�10�5 �4:8�10�5

1000 5:96�10�3 4:83�10�3 1:34�10�2 2:20�10�3 2:32�10�3 3:02�10�3 3:13�10�3�5:8�10�5 �5:3�10�5 �9:1�10�5 �2:9�10�5 �4:6�10�5 �3:4�10�5 �3:3�10�5
Table A.39: Performance of the alternative predictors, as a function of �s, in the M(t)=D=s(t)+H2
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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ASE of the predictors in the M(t)=D=s(t) + E10 model as a function of �s
�s QLr t HOLr t NIF Qlma HOLma QLa HOLa
10 8:72�10�2 1:09�10�1 1:15�10�1 4:30�10�2 6:20�10�2 5:95�10�2 6:64�10�2�2:1�10�2 �1:3�10�2 �1:2�10�2 �4:0�10�3 �4:9�10�3 �6:9�10�3 �4:2�10�3
20 6:00�10�2 6:31�10�2 7:09�10�2 2:42�10�2 3:28�10�2 3:09�10�2 3:57�10�2�1:1�10�2 �5:3�10�3 �7:3�10�3 �3:5�10�3 �2:7�10�3 �4:0�10�3 �4:0�10�3
30 5:49�10�2 5:16�10�2 5:68�10�2 2:02�10�2 2:63�10�2 2:40�10�2 2:73�10�2�7:3�10�3 �7:9�10�3 �7:3�10�3 �2:5�10�3 �2:3�10�3 �3:0�10�3 �2:8�10�3
50 3:84�10�2 3:84�10�2 4:03�10�2 1:64�10�2 1:94�10�2 1:93�10�2 2:15�10�2�4:2�10�3 �2:7�10�3 �3:4�10�3 �2:2�10�3 �2:1�10�3 �2:9�10�3 �2:9�10�3
70 3:82�10�2 3:69�10�2 3:68�10�2 1:56�10�2 1:73�10�2 1:87�10�2 1:98�10�2�5:5�10�3 �4:1�10�3 �4:6�10�3 �2:1�10�3 �2:2�10�3 �2:5�10�3 �2:7�10�3

100 3:69�10�2 3:70�10�2 3:56�10�2 1:53�10�2 1:65�10�2 1:79�10�2 1:86�10�2�4:4�10�3 �2:6�10�3 �2:7�10�3 �2:0�10�3 �2:2�10�3 �2:5�10�3 �2:6�10�3
300 3:21�10�2 3:07�10�2 2:68�10�2 1:32�10�2 1:36�10�2 1:49�10�2 1:52�10�2�2:1�10�3 �2:6�10�3 �2:5�10�3 �1:2�10�3 �1:2�10�3 �1:4�10�3 �1:5�10�3
500 3:14�10�2 2:98�10�2 2:54�10�2 1:32�10�2 1:34�10�2 1:52�10�2 1:53�10�2�2:3�10�3 �1:4�10�3 �1:4�10�3 �1:0�10�3 �1:1�10�3 �1:2�10�3 �1:1�10�3
700 3:15�10�2 3:00�10�2 2:51�10�2 1:33�10�2 1:33�10�2 1:51�10�2 1:52�10�2�1:6�10�3 �1:4�10�3 �1:4�10�3 �1:1�10�3 �1:1�10�3 �1:2�10�3 �1:3�10�3

1000 3:03�10�2 2:85�10�2 2:39�10�2 1:29�10�2 1:29�10�2 1:46�10�2 1:46�10�2�1:2�10�3 �1:1�10�3 �1:1�10�3 �8:8�10�4 �8:8�10�4 �1:2�10�3 �1:2�10�3
Table A.40: Performance of the alternative predictors, as a function of �s, in the M(t)=D=s(t)+E10
model with �(t) in (5.27), s(t) in (5.28), and 
a = 
s = 1:57 (corresponding to E[S] = 6 hours
with a 24 hour cycle). Estimates of the ASE are shown together with the half width of the 95%
confidence interval. The ASE’s are measured in units of mean service time squared per customer.
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