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Queues where people misreport their private information to access service faster are everywhere. Motivated by

the prevalence of such behaviour in practice, we construct a queueing-game-theoretic model where customers

make strategic claims to reduce their waiting time, and the Manager decides on the static scheduling policy

based on those claims to minimize the expected delay cost in the system. We develop a lying aversion model

where customers incur both delay and lying costs. We run controlled experiments to validate our modelling

assumptions regarding customer misreporting behaviour. In particular, we find that people do incur lying

costs, and that their misreporting behaviour does not depend on changes in waiting times, but rather on the

scheduling parameters. Based on the validated lying aversion model, we study the equilibrium that arises

in our game. We find that under certain conditions, the optimal policy is to use an honor policy where

service priority is given according to customer claims. We also find that it may be optimal to incentivize

more honesty by means of an upgrading policy where some customers who claim to not deserve priority are

upgraded to the priority queue. We find that the upgrading policy deviates from the celebrated cµ rule.

Key words : Scheduling policy, priority queues, strategic customers, lying aversion, behaviour in queues.

1. Introduction

Queuing systems where people make dishonest claims in order to access service faster are every-

where. For example, in telephone triage systems, it is known that patients routinely exaggerate

symptoms to get a doctor’s appointment sooner (Kirton et al. 2020) or an ambulance faster (Jones

2020). In the United Kingdom, there have been reports of people lying about their symptoms (BBC

2020a) or their employment status (BBC 2020b) in order to receive COVID-19 tests faster at home.

In this case, it was possible for people to be dishonest with impunity because the online booking
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system was explicit on its reliance on public honesty rather than employment checks (Weaver and

Proctor 2020). This is similar to the honor policy used for the scheduling of COVID vaccinations

in some countries; e.g., in the United States (NPR 2021a), where claims of eligibility are not ver-

ified since requiring additional checks would add barriers to access, and is therefore undesirable

or logistically difficult to enforce (NPR 2021b). While some systems rely on unverifiable customer

claims to schedule services (despite knowing that misreporting is prevalent), other systems opt

to not rely on customer claims at all, due to such dishonesty. For example, a chat-bot symptom

checker application was recently commissioned by the National Health Service (NHS) to aid in

booking general practitioner (GP) appointments for patients. This initiative was dropped, after

initial pilot trials, because patients admitted that they would exaggerate their symptoms (in the

text exchange with the chat-bot symptom-checker) in order to see the GP faster (Heather 2017).

The above examples share similar characteristics. First, only customers know their private infor-

mation, which gives rise to a clear incentive to misreport in order to begin service faster. As claims

are not verified, it is difficult to punish or fine untruthful behaviour, which creates an opportu-

nity to misreport with complete impunity. Second, queues in those settings are unobservable, i.e.,

customers make claims without seeing the other customers waiting, or directly observing other cus-

tomers’ claims. This is because the service requests themselves are made either online or through

the phone. Third, those services typically involve a single (or rare) interaction with the queueing

system, so there is a strong degree of anonymity for customers. Thus, reputation concerns do not

play a role, and community enforcement of desirable behaviour, which may occur with physical

queues, is not possible (Allon and Hanany 2012). Fourth, due to the nature of those settings, price

discrimination, which is a standard operational control used to induce truthful incentive-compatible

claims, is not possible. For example, healthcare services provided by the NHS are publicly funded

and cannot be individually priced. Similarly, due to access concerns and the social nature of those

systems, inspection and admission controls, which are also standard operational controls, may be

undesirable. For example, during the COVID-19 pandemic in the United Kingdom, many supermar-

ket chains implemented a groceries delivery service where priority slots were reserved for vulnerable
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people who were not able to leave their homes (Kaidan 2020). For this service, customer claims

were actually verified against a list of vulnerable people provided by the government. However,

recent reports have found that because of “poor data”, it took too long to identify more than a

third of the 2.2 million vulnerable people who were struggling to gain access to food (Syal 2021).

Finally, while there is evidence of customer untruthfulness, clearly it remains that not everyone

misreports. However, it is not clear what properties of the scheduling policy (i.e., the order in which

to serve customers) drive customer misreporting behaviour, if at all, or help to mitigate it.

In settings like the ones described above, managers aim to make efficient scheduling decisions

in order to minimize customer waiting, especially for those customers with the most urgent needs.

However, it is not clear how customers will strategically respond to different scheduling decisions

and, thus, how to use potentially false customer claims. Indeed, while the above examples share

the same set of properties and presumably a similar objective, in practice different scheduling

policies are observed, as illustrated above. This gives rise to our main research questions: (1) How

should service systems make scheduling decisions in settings where customers may potentially make

dishonest and unverifiable claims? (2) How does the misreporting behaviour of customers depend

on the scheduling policy? (3) Can the Manager incentivize more honest claims by relying on a

judicious scheduling policy?

To address those questions, we consider a priority queueing-game-theoretic model and run

controlled experiments to validate our modelling assumptions regarding customer misreporting

behaviour. In our game, the Manager’s information about true customer types (either high or

low) is based solely on customers’ own claims. At the beginning of the game, the Manager defines

and communicates a scheduling policy according to which customers will be served. We focus on

scheduling policies where customers are routed probabilistically, based on their claims, to either a

regular or to a priority queue. The Manager seeks to minimize the total expected delay cost in the

system. Based on the scheduling policy and the expected waiting times in the system, customers

decide on their individual claims. Customers have the incentive to misreport if doing so leads to a
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shorter expected waiting time. Finally, based on the scheduling policy and customer claims, cus-

tomers wait in a queue and eventually receive service. We study the equilibrium that arises in the

game and the optimal scheduling policy.

Contributions. To model misreporting behaviour in our game, we consider a lying aversion

model in which customers incur lying costs when they misreport. To validate the existence of lying

costs and to derive sensible modelling assumptions on customer misreporting behaviour, we run

controlled experiments where people can misreport their private information in order to wait less

in a virtual queue. In our experiment, we vary the waiting times and the scheduling parameters,

and estimate the impact of those changes on the misreporting probability. To the best of our

knowledge, we are the first to investigate misreporting behaviour when time is at stake, rather than

money. Moreover, in our queueing setting, customers are routed probabilistically based on their

claims, i.e., the outcomes are random. Studying the effect that uncertainty has on lying aversion is

a key contribution of our paper. Indeed, very few papers in the literature investigate how the lying

behaviour changes in uncertain environments and none of these papers consider a queueing setting

as we do here. Importantly, we provide experimental evidence that the majority of explainable

lying behaviour can be attributed to the scheduling parameters, rather than the waiting times

themselves.

Based on our experimentally-validated lying-aversion model, we theoretically study the equilib-

rium that arises in the game and the optimal scheduling policy. We find that, as long as there is

some level of honesty in the system, customer claims are informative in equilibrium. Thus, it is

always optimal for the Manager to rely, in some way, on customer claims in scheduling. This gives

support to our motivating examples above where customer claims are actively sought despite the

fact that misreporting is possible. In particular, we find that if customers’ lying behaviour is not

sensitive enough to changes in the scheduling parameters (in a sense to be made more precise later),

then the optimal scheduling policy, which arises at equilibrium, is to give priority to customers

based on their claims. This provides support to honor policies commonly observed in practice.
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Interestingly, we find that if lying behaviour is sensitive enough, then it is optimal to incentivize

more customer honesty by means of an upgrading policy where some truthful customers who claim

to not deserve priority, are randomly upgraded to a priority queue. Importantly, this upgrading

policy deviates from the celebrated cµ rule, which prioritizes customers in decreasing order of their

cµ index, where c denotes the delay cost and µ denotes the service rate. This is noteworthy because

the cµ rule has been shown to be optimal with uncertain, yet exogenous, customer claims (Argon

and Ziya 2009, Bren and Saghafian 2019).

The remainder of the paper is structured as follows. In §2, we review the relevant literature. In

§3, we describe the model primitives and our queueing game. In §4, we describe the Manager’s

problem. In §5, we describe the customer’s problem and present a lying-aversion model. In §6, we

present an experimental study to validate several assumptions of the lying-aversion model. In §7,

we derive the equilibrium in the game and describe the optimal scheduling policy. Finally, in §8,

we draw conclusions.

2. Literature Review

This paper is related to four different streams of literature, which we describe below.

Queues with uncertain customer information. There is a rich queueing-theoretic literature which

studies scheduling decisions in priority queues where true customer types are perfectly known to

the Manager. In particular, the cµ rule has been shown to be optimal for delay cost minimization

in various settings (Cox and Smith 1991, Van Mieghem 1995). In practice, the true customer types

may not be perfectly known to the Manager. Van der Zee and Theil (1961) study how exogenous

misclassification errors affect optimal scheduling decisions in the system. Argon and Ziya (2009)

assume that the Manager receives a signal from each arriving customer, where the signal is the

probability that the customer is of a certain type. Argon and Ziya (2009) show that the Highest

Signal First (HSF) scheduling policy, which is consistent with the cµ rule, yields the lowest long-run

average waiting cost among all finite-class priority policies. Bren and Saghafian (2019) consider the

case in which the type of an arriving customer is known but the service rate for each type has to
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be dynamically learnt through a data-driven optimization approach. They also derive an optimal

scheduling policy that is similar to the HSF policy. Singh et al. (2022) assume that customer signals

are the output of a data-driven classifier, and propose an integrated approach where the classifier

and the prioritization policy are jointly optimized. In line with this stream of literature, we also

investigate scheduling decisions when customer true types are not known to the Manager. However,

unlike those papers, we focus on settings where customers have private information about their own

types, and where they strategically manipulate the signals (claims) that they send to the Manager.

Queues with strategic customers. There is a rich queueing-economics literature which focuses

on settings where customer information is private and where market mechanisms such as pricing

(Mendelson and Whang 1990, Afeche and Mendelson 2004), auctions (Kittsteiner and Moldovanu

2005), or bribing (Kleinrock 1967, Lui 1985) can be used to induce truthful reporting in the system;

see Hassin and Haviv (2003) for a survey. Hu et al. (2021) investigate a setting where customers are

strategic in deciding whether to disclose personal information to the service provider. Similar to this

literature, we focus on modelling queues with strategic customers who are delay sensitive. However,

contrary to those papers which resort to money transfers in order to differentiate customers, we

study how lying aversion influences customers’ strategic behaviour, and show how the Manager

can differentiate between customers, to a certain extent, without the use of incentive-compatible

pricing/auction mechanisms. Indeed, we focus on settings where money transfers are not applicable,

and instead investigate how the scheduling policy helps to incentivize truthful reporting.

Several papers investigate how scheduling decisions affect strategic customer behaviour, as we

do here (Afeche 2013, Afeche and Pavlin 2016, Yang et al. 2021, Yang 2021). In particular, some

of these works find that giving partial priority, e.g., by means of reducing the gap between the

expected waiting times of the different priority classes, may be useful to induce desirable customer

behaviour. Our optimal scheduling policy is a partial priority policy as well. However, in our paper,

this partial priority must be reached through upgrading low claims (and not by other means of

manipulating the waiting times) because of customers’ preferences for truth-telling.
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Behavioural queues. Our work is broadly related to papers studying the behavioural foundations

of queueing systems; see Allon and Kremer (2018) for background. Shunko et al. (2018) study the

behavioural impact of queue design on worker productivity in service systems which involve human

servers. Buell (2021) identifies the negative effects of last-place aversion in queues. Armony et al.

(2021) develop a game-theoretic model to assess the performance of pooling when behavioural

servers choose their capacities strategically. Kim et al. (2020) study admission decisions in queues

using behavioural models and controlled experiments. Wang and Zhou (2018) study how the queue

configuration affects human servers’ service time in a field experiment. Ülkü et al. (2020) investigate

the relationship between waiting time and subsequent purchase decisions. Luo et al. (2022) study

how customers in observable queues form their completion costs based on their position in line,

the number of people that have been served since they joined the line, and the service speed.

Althenayyan et al. (2022) investigate how line-sitting and express lines affect customers’ satisfaction

and fairness perceptions.

While there is ample empirical evidence illustrating the important role of social norms and

preferences in queueing systems, Allon and Hanany (2012) is, to the best of our knowledge, the

only work that investigates queueing intrusions with a formal mathematical model. In particular,

Allon and Hanany (2012) show that the common observation of “queue jumping” can be part

of social norms and can be explained on rational individual grounds. We depart from Allon and

Hanany (2012) in three fundamental ways. First, Allon and Hanany focus on service systems with

observable queues where the Manager is not involved in the way in which the queue is managed.

Thus customers, through community enforcement, regulate the queue. In contrast, we focus on

unobservable queueing systems where the Manager is in charge of controlling the queue, and

where customers do not see each other and are unable to prevent intrusions. Second, unlike Allon

and Hanany (2012), we model customer aversion to being untruthful and study its operational

implications. Third, our methodological approach is different, as we conduct controlled experiments

to shed light on the untruthful behaviour of customers in queues.
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Misreporting behaviour and lying costs. In recent years, a fast-growing literature across eco-

nomics, psychology, and sociology has begun to study how people misreport their private infor-

mation; see Rosenbaum et al. (2014) for a survey and Abeler et al. (2019) for a meta-analysis.

Overall, the literature strongly shows that people exhibit lying aversion (Abeler et al. 2019) as not

everyone misreports even under conditions of complete anonymity and impunity. In particular, the

experimental paradigm in Fischbacher and Föllmi-Heusi (2013) is the most widely adopted in the

literature to investigate misreporting behaviour. In this paradigm, participants privately observe

the outcome of a random variable, report this outcome, and receive a monetary payoff proportional

to their report. Similarly, we adopt this experimental paradigm to study how participants misre-

port in a queueing setting. However, in contrast to this literature which uses money to incentivize

participants to misreport their private information, in our experimental investigation, people have

the incentive to misreport in order to shorten their waiting time in queue. Also, the literature has

almost exclusively focused on settings where outcomes are certain, and until recently the literature

has been largely silent on how lying costs extend to uncertain environments. In contrast, in our

experimental investigation, outcomes associated with lying or telling the truth may be uncertain

due to the scheduling policy. Similar to our work where outcomes are uncertain, Celse et al. (2019),

Dugar et al. (2019), Steinel et al. (2022) explore, under different risky environments, how lying

changes when its consequences are not certain and they do not consider a queueing setting. Con-

trary to this, we investigate how lying changes when the consequences of truth-telling (due to the

upgrading probability) are random. Finally, Özer et al. (2011) also models lying costs, however,

their paper focuses on forecasting in supply chains, unlike our focus in this paper.

3. Model Primitives

We consider an M/M/1 queueing system where customers arrive according to a Poisson process

with rate λ, and where service times are independent and identically distributed exponential ran-

dom variables with parameter 1/µ. An arriving customer has type X, where X takes value H with

probability pH , and value L with probability pL = 1− pH . Customers are delay sensitive, and a
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customer of type X = x has a per-time-unit waiting cost cx. We assume that cH > cL. The traffic

intensity is ρ= λ/µ, and we assume that the system is stable, i.e., that ρ< 1.

At the beginning of the game, the Manager commits to and communicates a claim-based schedul-

ing policy according to which customers will be served. Customers have private information about

their type X and, upon arrival, make a claim Y = y ∈ {H,L} about their type. Because the Man-

ager does not know the true customer types, and because the scheduling of customers depends

on their claims, customers may be untruthful in their claims, i.e., we may have X 6= Y . While

the Manager cannot observe individual customer types, he can correctly anticipate the customers’

aggregate claiming behaviour for a given scheduling policy. Finally, based on the scheduling policy

and on customer claims, customers wait in queue and, eventually, receive service. Waiting times

in the system depend on customer claims and on the scheduling policy, which must be chosen

optimally based on those claims. In turn, customer claims are, themselves, based on the scheduling

policy which is announced by the Manager a priori. That is, the dependence between waiting times,

customer claims, and the scheduling policy is endogenously determined.

4. The Manager’s Problem

The Manager commits to a scheduling policy according to which customers will be served. The

Manager’s objective is to minimize the expected waiting cost in the system. We investigate static

work-conserving two-class priority policies, where customers are assigned to a priority class with

expected waiting time Wy (not including service time) based on their claims y ∈ {H,L}.

To find the optimal scheduling policy, it is customary to use the operationally achievable method

(Coffman Jr and Mitrani 1980), which focuses on identifying the optimal waiting times, Wy, factor-

ing in customer decisions, while abstracting away from specific scheduling policies that induce those

waiting times. Once the optimal Wy are identified, one can consider different policy implemen-

tations and calibrate the relevant parameters consistently. This implicitly assumes that customer

decisions are only driven by Wy, irrespective of the actual scheduling policy implementation - a

reasonable assumption with rational customers.
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However, when behavioural factors are considered, as we do here, different scheduling policy

implementations may lead to different customer behaviours. That is, having the same expected

waiting times does not guarantee that customer behaviour will be the same in all policy imple-

mentations. In particular, misreporting behaviour has been found to be insensitive to changes in

the benefits associated with dishonesty, but highly conditional and susceptible to contextual fac-

tors (Rosenbaum et al. 2014, Abeler et al. 2014), e.g., factors that increase the salience of honesty

standards, factors that allow for moral justifications, or factors that allow for reactions and inter-

pretations to objective risk (Dugar et al. 2019). This is particularly relevant in our investigation of

optimal scheduling policies as different implementations may vary in their contextual factors. For

example, policies that schedule the service probabilistically based on customers’ decisions (Yang

et al. 2021) allow for different customer interpretations of objective risk, while policies that schedule

the service deterministically (Yang 2021) do not. Based on this, to derive managerial prescriptions

that take into account customer behaviour, we focus on a specific class of scheduling policies.

4.1. Scheduling Policy Implementation

We consider the non-preemptive version of the α-policy (Yang et al. 2021), since preemptive policies

are difficult to implement in practice. Based on customer claims, the Manager assigns customers to

a queue K = k ∈ {1,2} with expected waiting times W1 (priority queue) and W2 (regular queue).

These waiting times arise endogenously and are given by

W1 =
λ

µ(µ−λ1)
and W2 =

W1

1−λ/µ
,

where λ1 is the rate of arrivals of customers who are assigned to the priority queue at equilibrium.

Customers are served in a first-come-first-served (FCFS) fashion within each queue, and customers

in the priority queue are given non-preemptive priority over customers in the regular queue. In

particular, based on customer claims, the α-policy assigns customers to the priority queue with

probabilities αy = P(K = 1|Y = y). That is, upon arrival, customers who claim H (L) are assigned

to the priority queue with probability αH (αL), and to the regular queue with probability 1−αH
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(1−αL). Thus, the Manager’s problem is to select the routing probabilities α= (αH , αL) in order

to minimize the total expected steady-state waiting cost in the system:

Min
α

∑
k∈{1,2}

∑
x∈{H,L}

λk,xcxWk, (1)

where λk,x is the equilibrium rate of arrivals of customers of true type x who are assigned to priority

queue k. The Manager cannot observe the true type x of each customer, but can determine λk,x

based on the known equilibrium customer behaviour. Specifically, the arrival rate λk,x is obtained

by conditioning on customer claims as follows for x∈ {H,L} and k ∈ {1,2}:

λk,x = λ ·P(X = x) ·
∑

y∈{H,L}

P(K = k|X = x,Y = y)P(Y = y|X = x),

where P(K = k|X = x,Y = y) = P(K = k|Y = y) since the assignment of claims to priority queues

is independent of X = x, conditional on Y = y. Also, P(Y = y|X = x) captures a typical x type

customer’s equilibrium claiming behaviour. In §7, we describe the customer claiming behaviour

and the optimal scheduling policy that arise in equilibrium.

We note that the α-policy is general in the sense that different parametrizations lead to concep-

tually different policies. For example, (αH = 1, αL = 0) corresponds to a policy where customers

with H claims are given full priority1. In general, (1≥ αH > αL ≥ 0) correspond to policies that

give partial priority to customers with H claims. For example, (1>αH >αL = 0) corresponds to a

policy where customers with H claims are given partial priority by means of downgrading some H

claims to the regular queue. Also, (1 = αH >αL > 0) corresponds to a policy where customers with

H claims are given partial priority, albeit by means of upgrading some L claims to the priority

queue. Finally, (αH = 1, αL = 1) corresponds to the FCFS policy. Note that, as above, we can also

let αL >αH to give full or partial priority to customers with L claims.

1 With the α-policy, expected waiting times based on claims are given by Wy = αyW1 + (1 − αy)W2. Formally,

customers who claim H are given full priority whenever WH = λ
µ(µ−λH )

and WH <WL. Also, customers who claim

H are given partial priority whenever WH >
λ

µ(µ−λH )
and WH <WL. The same logic applies for L claims.
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5. Customer Problem: A Lying Aversion Model

It is well established in the literature that when dishonesty is not sanctioned or remains anony-

mous, the decision of whether or not to lie poses a conflict between self-interest and self-concept

(Fischbacher and Föllmi-Heusi 2013, Rosenbaum et al. 2014, Abeler et al. 2019). That is, people

have an incentive to lie to obtain a material gain (e.g., reducing their waiting cost) but they, con-

currently, incur a lying cost because misreporting is intrinsically costly. To capture this tension, we

model the behavioural process which leads to individual customer claims as follows. A customer of

true type x∈ {H,L} makes a claim y ∈ {H,L} to minimize a total expected cost equal to the sum

of the expected delay cost and the intrinsic lying cost:

Min
y∈{H,L}

cxWy + θ`(x, y,α,W), (2)

where cxWy = cx(αyW1+(1−αy)W2) is the expected waiting cost for customers of type x who claim

y and θ`(x, y,α,W) is the expected lying cost of a misreporting customer, for α= (αH , αL) and

W = (W1,W2). Because customers are delay sensitive, they have the incentive to misreport their

types if doing so leads to a shorter expected waiting time. However, a growing body of research has

consistently found that people present lying aversion (Gneezy et al. 2013): People often refrain from

misreporting their private information, even when they can do so anonymously and with complete

impunity (Rosenbaum et al. 2014). Such lying aversion coalesces from a myriad of idiosyncratic

factors such as moral or religious reasons, self-image concerns, or unwillingness to deviate from

socially-acceptable behaviour (Abeler et al. 2014, Gibson et al. 2013).

To model intrinsic lying costs, we assume that customers experience no lying cost when they

claim their true types, i.e., `(x, y,α,W) = 0 for y= x, and incur a non-negative lying cost whenever

they misreport, i.e., `(x, y,α,W)≥ 0 for y 6= x, where such lying cost is a function of (potentially)

the routing probabilities and waiting times. In §5.1, we present several sensible specifications for

the lying cost, based on the extant literature. Consistent with empirical research which suggests

that individuals exhibit heterogeneous lying costs (Gibson et al. 2013, Rosenbaum et al. 2014,

Abeler et al. 2014, 2019), we assume that customers are endowed with a lying aversion, Θ, which
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is random. Each customer draws a random variate, Θ = θ, which represents their individual lying

aversion, where θ is independently drawn from a distribution Φ with density φ over some interval

[0, θ̄]. While individual θ values are private information to customers, we assume that the Manager

knows the distribution of Θ. We assume that the lying aversion distribution is an increasing failure

rate (IFR) distribution: the failure rate of Θ is given by h(z) = φ(z)/(1−Φ(z)), and the random

variable Θ is said to have an increasing failure rate if h(z) is weakly increasing in z for Φ(z)< 1; see

Lariviere and Porteus (2001). We note that the assumption that the lying aversion Θ is IFR is not

restrictive because it captures many common distributions, e.g., uniform, exponential, half normal,

among others (Banciu and Mirchandani 2013). Also, the IFR assumption leads to a unimodal

Manager’s objective function and thus to a unique equilibrium in the game.

Finally, we emphasize that, as per our motivating examples in the introduction, we focus on

unobservable queueing settings, where there are no reputation concerns and where the service

involves an anonymous, one-shot, interaction with the Manager. Since the queue is unobservable,

customers do not see others making false claims and jumping the queue. We envision that, with

observable queues, directly observing the behaviour of others may shape a customer’s lying cost,

i.e., we may have reputation-based lying costs2. We defer the study of lying behaviour in observable

queueing setting to future research.

5.1. Sensible Lying-Cost Specifications

In the extant literature, there are two main approaches to model the intrinsic lying cost3: (1) A

fixed lying cost (DellaVigna et al. 2016, Khalmetski and Sliwka 2019), and (2) a lying cost which

2 For example Dufwenberg and Dufwenberg (2018) present a model where people derive disutility in proportion to

the amount by which they are perceived to misreport, even if they are actually honest. That is, in observable queues,

our assumption that `(x, y,α,W) = 0 for y= x does not necessarily hold.

3 The other prominent classes of models found in literature that do not focus on intrinsic lying costs are: social norms

models, where lying costs depend on the perception of how others behave, e.g., Abeler et al. (2019); and reputation

models, where lying costs depend on what others think about the honesty of the individual, e.g., Gneezy et al. (2018),

Dufwenberg and Dufwenberg (2018), Khalmetski and Sliwka (2019). See Abeler et al. (2019) for a survey on variations

within each class: for example, the social norms class includes models based on conformity and inequality aversion;

and the reputation class includes models based on reputation for honesty and reputation for not being greedy.
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increases in the linear (or strictly convex) material benefit derived from misreporting (Duch et al.

2021, Gneezy et al. 2018, Kartik 2009). In our setting, a fixed lying cost would be `(x, y,α,W) = d

for y 6= x, where d is some constant. A lying cost which increases in the convex material benefit

derived from misreporting would be `(x, y,α,W) = (cx(Wx −Wy)
+)r, for r ≥ 1. This expression

captures the material benefit as the difference between expected waiting costs given a claim. We

note that, in the operations management literature, Özer et al. (2011) propose a linear size of

the lie specification in terms of the extent to which information is misreported. Ultimately, our

objective is to identify to what extent the predictions under those sensible lying-cost specifications,

hold with human decision-makers.

5.2. Misreporting Behaviour

Individual customer types and lying costs are not observable, and only the aggregate misreporting

probability can be determined by the Manager. This is consistent with our motivating examples

where individual customer misreporting cannot be directly observed. In such settings, studying

how the misreporting probability depends on a given set of fixed values for the waiting times

and routing probabilities, i.e., deriving the best-response misreporting probability function, allows

us to identify which lying-cost specification, from the ones introduced above, is most consistent

with experimental data. Thus, we will focus our experimental efforts here on investigating the

best-response misreporting probability function. This circumvents many experimental complexities

associated with studying queueing steady-state equilibria (Allon and Kremer 2018).

Consider a tagged x type customer with lying aversion parameter θ′ who faces, upon arrival,

claim-based expected waiting times Wy and routing probabilities αy. Based on (2), the expected

cost of that tagged customer is cxWx for a honest claim y = x and cxWy + θ′`(x, y,α,W) for a

dishonest claim y 6= x. That tagged customer selects the claim y which minimizes her expected cost.

First, we note that the tagged customer will never misreport if there is no incentive, specifically

when Wx <Wy for y 6= x, since cxWx < cxWy + θ′`(x, y,α,W). For the case of no incentive where

Wx =Wy for y 6= x, it is possible that customers will be indifferent between claims and misreport
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with arbitrary probability in equilibrium. This happens when `(x, y,α,W) = 0 for y 6= x, e.g., in

the material benefit specification above. We note that the misreporting behaviour in this particular

case is inconsequential since, for Wx =Wy, the expected delay cost in the system is equivalent to

the one achieved under a FCFS scheme irrespective of the actual misreporting probability. Finally,

if there is an incentive to misreport, Wx >Wy for y 6= x, the tagged customer misreports whenever

her lying aversion parameter θ′ is sufficiently small4:

θ′ ≤ cx(Wx−Wy)

`(x, y,α,W)
=
cx(αy −αx)(W2−W1)

`(x, y,α,W)
for y 6= x.

Since individual lying aversions, i.e., specific θ values, are not observable, it follows that a typical

x type customer misreports with probability:

P(Y = y|X = x) = Φ

(
cx(αy −αx)(W2−W1)

`(x, y,α,W)

)
for y 6= x, (3)

where we recall that Φ is the CDF of the lying aversion Θ. The best-response misreporting proba-

bility is given by (3). This expression motivates our experimental design. In §6, we run controlled

experiments to investigate how changes in pre-specified values for the waiting times and routing

probabilities affect the misreporting probability in (3). The misreporting probability is readily mea-

surable in a controlled experimental environment where subjects face an individual decision task.

Based on the aforementioned potential lying-cost specifications, i.e., fixed cost, linear cost in the

material benefit, and strictly convex cost in the material benefit, the best-response misreporting

probability is, respectively, given by:

[fixed] P(Y = y|X = x) = Φ

(
cx(αy −αx)(W2−W1)

d

)
for y 6= x, (4)

[linear] P(Y = y|X = x) = Φ
(
1
)

for y 6= x, (5)

[strictly convex] P(Y = y|X = x) = Φ

(
1

(cx(αy −αx)(W2−W1))r−1

)
,with r > 1, for y 6= x. (6)

Based on these expressions, to assess which lying-cost model, if any, is consistent with the data,

we experimentally investigate in §6 how changes in both ∆α= αy−αx and ∆W =W2−W1 affect

the probability to misreport.

4 Recall that Wy = αyW1 + (1− αy)W2 for y ∈ {H,L}. Therefore, the difference in expected waiting times given a

claim is Wx−Wy = (αy −αx)(W2−W1) for y 6= x.
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6. Experimental Investigation

In this section, we experimentally study the direction of changes in human decisions along the two

dimensions of the scheduling policy environment: The routing probabilities and the waiting times.

In particular, we study how changes in both ∆α and ∆W affect the best-response misreporting

probabilities associated with subject decisions. This study is based on the well-known experimental

procedure proposed by Fischbacher and Föllmi-Heusi (2013) to investigate the extent to which

people misreport their private information, hereafter referred to as the FFH paradigm. In the FFH

paradigm, participants privately observe the outcome of a random variable, e.g., the roll of a die.

They are then asked to report that outcome and, subsequently, receive a payoff depending on their

reported claims. While dishonesty cannot be verified at the individual participant level (because

the true outcome is unknown to the experimenter), one can make inferences about aggregate

participant lying behaviour, because the probability distribution of the random variable in the

experiment is known to the experimenter. Importantly, participants can misreport their privately

observed outcomes with absolute impunity and anonymity, making this design appropriate for

investigating intrinsic lying costs - it allows to mitigate the effect of other confounding factors, such

as reputation costs, negative externality towards others, perception by others, or fear of getting

caught. The FFH paradigm is the most widely adopted in the literature: it has been used in over

90 studies involving more than 44,000 subjects across 47 countries (Abeler et al. 2019). Finally,

several studies have found that the observed behaviour in the FFH paradigm represents a good

metric for honesty as it correlates strongly with real-life behaviour (Gächter and Schulz 2016, Dai

et al. 2018).

6.1. Experimental Procedure

To study intrinsic lying costs and to further mitigate confounding factors, such as reputation and

image concerns, we decide to run an online experiment. We conduct an online virtual queueing

experiment in Qualtrics, that represents a one-shot individual decision-making situation where

participants are told the waiting times in two queues and the routing probabilities to these two
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queues, depending on their claims. In other words, scheduling is in accordance with the α-policy.

We note that our decision to run a virtual queue experiment is in line with our motivating examples

where service requests are commonly made online. In our experiment, participants are randomly

assigned to one of nine different experimental conditions in a between-subject fashion (see Table

1) where we vary the differences in the routing probabilities, ∆α, and the waiting times between

queues, ∆W . Consistent with our unobservable queueing setting and motivating examples in the

introduction, participants cannot observe the dynamic state of the queue, i.e., the number of

participants in line, or the real-time behaviour of other participants. They only have information

about the waiting times in each queue and the routing probabilities.

Based on the FFH paradigm, participants are asked to privately roll a six-sided die and to

record the outcome on a piece of paper. To avoid potential confounding factors, participants are

instructed to roll a die at home or, alternatively, to use Google’s virtual die5. Indeed, as described

above, to study intrinsic lying costs it is important that the experimenters do not observe the die

rolls. After participants roll the die and write down the outcome on a piece of paper, they are

presented with the waiting times and routing probabilities according to their randomly assigned

condition. Participants are instructed that those who claim the number 5 will wait in the Short

queue with probability αH , and those who claim any other number will wait in the Short queue

with probability αL. We set αH >αL in all experimental conditions, so that participants have the

incentive to claim the number 5 to reduce their expected waiting time. Before participants roll the

die and report any number, they are placed in a practice queue for 2 minutes. This ensures that

participants understand what it feels like to wait in the Short virtual queue (in all our experimental

conditions, the waiting time of the Short queue is 2 min). After participants report a number,

they are assigned to a queue based on the α-policy, wait in queue, and finally answer two simple

questions related to their experience in the queue, which concludes the experiment. Throughout

the experiment, there is no mention of lying, honesty, or any related concepts.

5 At the following link https://www.google.com/search?q=dice+roller.

https://www.google.com/search?q=dice+roller
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Table 1 Experimental conditions.

Condition ∆α ∆W αH αL W2 W1 Sample

1 1 3 min 1 0 5 min 2 min 226

2 1 8 min 1 0 10 min 2 min 220

3 1 13 min 1 0 15 min 2 min 217

4 0.5 3 min 1 0.5 5 min 2 min 222

5 0.5 8 min 1 0.5 10 min 2 min 227

6 0.5 13 min 1 0.5 15 min 2 min 222

7 0.1 3 min 1 0.9 5 min 2 min 220

8 0.1 8 min 1 0.9 10 min 2 min 233

9 0.1 13 min 1 0.9 15 min 2 min 234

Participants and exclusions. We recruited participants from the Amazon Mechanical Turk

(MTurk) platform. Participants were instructed that they must wait in a virtual queue, then

answered a two-question survey in exchange for a 1 US dollar payment (the payment is indepen-

dent of the wait time in queue). Participants were informed that the experiment could take up

to 30 minutes. To ensure high-quality data, participants with at least 0.95 HIT approval ratio

(proportion of completed tasks) were recruited, and we incorporated reCAPTCHA directly in our

study. Participants were also asked, as part of the instructions for the experiment, several questions

related to the α-policy implementation. Participants were able to finish the instructions section

only if they typed the correct answers. We excluded participants that did not complete the exper-

iment. Moreover, while waiting in the virtual queue, and to ensure that participants experienced

the wait, they were asked to click a button that appeared every 60 seconds in order to move ahead

in the queue. The remaining waiting time for participants in a given queue stopped from elapsing

until they clicked that button. We recorded the time that participants took to click each button

and excluded participants that, on average, took longer than 30 seconds to click those buttons once

they appeared.
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We set the target sample size for the experiment and our analysis plans a priori6. A total of

2,373 participants (44.33% female, mean age Mage = 37.97, standard deviation SDage = 11.70)

were recruited. In our experiment we have a completion rate of 95%. From our original sample,

90% of participants took, on average, less than 30 seconds to click the buttons, and the mean and

median average click time was 14 seconds and 4 seconds, respectively. After exclusions, we are left

with a sample of 2,021 participants (45.47% female, mean age Mage = 38.23, standard deviation

SDage = 11.99). Results are unchanged by the aforementioned exclusions.

6.2. Hypotheses

The existence of intrinsic lying costs underpins our lying-aversion model. Indeed, without lying

costs as a behavioural extension in the customer problem (2), our queueing game becomes trivial:

We can clearly see that if `(x, y,α,W) = 0 for y 6= x, then all customers misreport with probability

1. In other words, the existence of intrinsic lying costs is a necessary condition to retrieve any level

of honesty, given our experimental design which precludes any other type of lying-related costs.

This leads to our first hypothesis:

H1. The proportion of participants who misreport their private information in order to wait in

the Short queue is bounded away from 1.

Moreover, as described before, and motivated by the expressions for the misreporting proba-

bilities under the sensible lying-cost specifications in §5.2, we are interested in investigating the

effects of ∆α and ∆W on misreporting. We see in (4) that, with a fixed lying cost, misreporting

is predicted to increase in both the difference in routing probabilities, ∆α, and in the difference in

waiting times between queues, ∆W . Formally:

H2a. Increasing the difference in the waiting times between the two queues increases the pro-

portion of participants who misreport.

H3a. Increasing the difference in the routing probabilities increases the proportion of participants

who misreport.

6 The pre-registration document can be found at: https://aspredicted.org/blind.php?x=7u6ar3.

https://aspredicted.org/blind.php?x=7u6ar3
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In contrast, in (5), we see that with a lying cost that increases linearly in the material benefit,

changes in ∆α and ∆W are predicted to not affect misreporting. Formally:

H2b. Changing the difference in the waiting times between the two queues does not have an

effect on the proportion of participants who misreport.

H3b. Changing the difference in the routing probabilities does not have an effect on the propor-

tion of participants who misreport.

Finally, in (6), if the lying cost increases convexly in the material benefit for r > 1, then the

probability of misreporting is predicted to decrease in both ∆α and ∆W . Formally:

H2c. Increasing the difference in the waiting times between the two queues decreases the pro-

portion of participants who misreport.

H3c. Increasing the difference in the routing probabilities decreases the proportion of participants

who misreport.

6.3. Experimental Results

We now describe our experimental results. In the FFH experimental design, since it is not possible

to observe individual die outcomes, predictions regarding the misreporting behaviour of partici-

pants are tested by conducting statistical analyses on participants’ reported outcomes; this is a

standard procedure, see e.g., Abeler et al. (2019), Fischbacher and Föllmi-Heusi (2013). Indeed,

under the assumption that there is no down-reporting (i.e., participants lying to their disadvan-

tage), and since die outcomes are generated by a discrete uniform distribution in every experimental

condition, differences in reporting behaviour between conditions can be attributed to differences in

lying behaviour, and differences between the distribution of reports and the uniform distribution

represent evidence for lying (Fries and Parra 2021, Fries et al. 2021). As a robustness check, in

Appendix B.3.3 we conduct a simulation analysis where we investigate the effect of the sampling

variation of the die outcome. Our simulation results show that for the sample sizes that we work

with in the present experiment, we can confidently conclude that differences in reporting behaviour

are indeed attributed to differences in lying behaviour, and not to sampling variation.
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In Figure 1, we plot the proportions of participants who reported the number 5 across all exper-

imental conditions. In Appendix B.1, we present corresponding proportions in Table 2. Recall that

participants have the incentive to report the number 5 to reduce their waiting time in the queue.

Figure 1 Proportions of participants who reported the number 5 across experimental conditions.
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Human misreporting behaviour demonstrates the existence of lying costs. We run exact binomial

tests for the proportion of participants who reported the number 5 in each condition compared

to the proportion that would have reported the number 5 under full honesty i.e., 1/6, (p-values

< 0.05). This means that participants misreported in all conditions, which can be readily seen in

Figure 1, where the black horizontal dashed line represents the expected proportion of customers

who would have reported the number 5 under the assumption of full honesty. Any value above

the dashed line is based on untruthfulness, in expectation. Importantly, we find that participants

misreport little across all experimental conditions. It is clear from Figure 1 that the proportion of

participants who reported the number 5 is far from 1, i.e., the full-dishonesty black horizontal solid

line in the figure. Since the FFH paradigm focuses on intrinsic costs and, by design, controls for
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other confounding costs, any reluctance to lie can be attributed to intrinsic lying costs. This result

strongly supports the existence of lying costs, as per our model in (2), i.e., we find support for H1.

Impact of changes in waiting times. To test the effects of changes in waiting times, we run logistic

regressions for the probability to claim the number 5, where we control for age and gender (see

Table 3 in Appendix B.2 for details). We find that the coefficient for the difference in waiting

times is not significant and close to 0 in all of the regression specifications. This provides strong

evidence to support the claim that changes in waiting times affect very little (if at all) misreporting

behaviour. In Appendix B.3, we present several non-parametric tests as robustness checks to further

support our conclusions. We note that this finding provides support to H2b, but not to H2a and

H2c. That is, this result is consistent with the prediction of the linear lying-cost model, but not

with the predictions of the fixed and strictly convex lying-cost models.

Impact of changes in the routing probabilities. In our logistic regressions, based on the Akaike

Information Criterion (AIC), we find that the most appropriate model specification among the

ones considered, is Model (2a) which includes an intercept, demographic covariates (insignificant in

our data), and the ∆α covariate (see Table 3 in Appendix B.2). We observe that the coefficient for

∆α is significant and positive, indicating that the misreporting probability increases in ∆α. The

other specifications included the ∆W covariate, and the interaction term ∆α ∗∆W . We note that

in Model (4a) the coefficient for the interaction term ∆α ∗∆W is not significant and close to 0.

Since such interaction term represents the difference in expected waiting times between the priority

classes WL−WH , this latter result provides support to our claim in §4 that customers deviate from

the rationality assumption where their decisions would be only driven by expected waiting times

Wy. Overall, we find sufficient statistical evidence in our data to support the claim that changes

in ∆α affect misreporting behaviour. In Appendix B.3, we present several non-parametric tests as

robustness checks to further support our conclusions. We note that this finding provides support

to H3a, but not to H3b and H3c. That is, this result is consistent with the prediction of the fixed

lying-cost model, but not with the predictions of the linear and strictly convex lying-cost models.
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6.4. Modelling Implications

The results of our experimental study show that not everyone misreports, which strongly supports

the existence of lying costs, as per our model in (2). Moreover, the results indicate that the great

majority of explainable lying behaviour can be attributed to ∆α, while only a very small portion (if

at all) can be attributed to the expected waiting times ∆W . We note that none of the considered

sensible models in §5.1 are consistent with both findings, i.e., their predictions for the best-response

misreporting probabilities do not exhibit the same directional patterns as our experimental results

along the two dimensions of the scheduling policy environment: the routing probabilities and the

waiting times. This indicates that we require to revise our assumptions to better capture the

direction of changes in the observed decisions in our data. To do so, we highlight the fact that the

considered lying-cost models above are based on the extant literature which has mainly focused

on settings where the consequences of the reporting behaviour are certain. In contrast, in our

queueing setting, due to the routing probabilities, the outcomes of both telling the truth and

misreporting may be uncertain. Importantly, we highlight that for our experimental conditions

1-3, where outcomes are certain (since αH = 1 and αL = 0), the linear lying cost specification i.e.,

`(x, y,α,W) = cx(Wx −Wy)
+, is the only one which is consistent with our experimental results,

as it is the only one where changes in the waiting times do not affect misreporting. This finding is

consistent with the evidence in the literature that the average amount of lying does not change in

the difference in monetary payoffs, even when they are increased from a few cents to 50 USD, a

500-fold increase (Abeler et al. 2019).

We now propose a model which is consistent with our experimental data, i.e., which leads,

simultaneously, to a misreporting probability which is insensitive to the waiting times yet sensitive

to changes in the routing probabilities. In Appendix F, we provide a numerical analysis where we

study the optimal policies that arise when the misreporting probability is indeed sensitive to waiting

times. This allows us to better understand the impact of capturing wait-time insensitivity. To

guarantee insensitivity to waiting times, it is sufficient to assume that the lying cost, `(x, y,α,W),
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is proportional to the material gain from lying, i.e., proportional to cx(Wx−Wy)
+. This explanation

is commonly made in the literature (Kajackaite and Gneezy 2017) to justify the insensitivity of the

misreporting probability to changes in the material incentives. As such, we ensure that the lying

cost balances out the incentive to misreport, so that indeed varying the difference in waiting times

does not affect the probability of misreporting.

To capture the dependence of the misreporting probability on the routing parameters, we allow

for the routing probabilities to affect the lying aversion, θ, directly. We note that this assump-

tion is informed by the literature which argues that the lying aversion of individuals is malleable

(Rosenbaum et al. 2014, Abeler et al. 2014), and can be directly shaped by factors that affect the

justifiability of the lie such as outcome uncertainty (Celse et al. 2019, Dugar et al. 2019). This

latter point is important since outcome uncertainty in our setting stems from the usage of routing

probabilities for the scheduling of customers. In particular, a higher justifiability to lie creates a

sort of “psychological distance” from misreporting, which allows people to further relax their moral

standards (Dugar et al. 2019).

Based on the above, we assume that a customer of true type x∈ {H,L} makes a claim y ∈ {H,L}

to minimize a total expected cost equal to the sum of the expected delay cost and the intrinsic

lying cost:

Min
y∈{H,L}

cxWy + θ(α)cx(Wx−Wy)
+, (7)

where θ(α) = θ for customers without an incentive to lie (i.e., for whom Wx ≤Wy or, equivalently,

αy ≤ αx for y 6= x), and θ(α) = θ/τ(∆α) for customers with an incentive to lie (i.e., Wx >Wy or,

equivalently, αy >αx for y 6= x). In this case, the lying aversion θ is shaped by a function τ(∆α)> 0.

Based on (7) for y 6= x, as in §5.2, a type x customer for which Wx <Wy never misreports. A type x

customer for which Wx =Wy misreports with arbitrary probability in equilibrium. Finally, a type

x customer for which Wx >Wy misreports with probability:

P(Y = y|X = x) = Φ
(
τ(∆α)

)
for y 6= x, (8)
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where we recall that Φ is the CDF of the lying aversion Θ. Note that the expression in (8) is

consistent with our experimental results where we saw that participant lying behavior is influenced

by changes in routing probabilities ∆α, rather than in the waiting times.

6.4.1. Properties of τ(∆α). We make assumptions on τ(∆α) to capture changes in the

misreporting probability which are consistent with our experimental data. In what follows we write

f ′(t) and f ′′(t) to denote, respectively, the first and second derivative of a function f with respect

to its argument t.

Assumption 1. We assume that τ(∆α) satisfies τ ′(∆α)≥ 0 and τ(1)< θ̄.

The assumption, τ ′(∆α)≥ 0, implies that the lying aversion decreases in ∆α, which is consistent

with our experimental observation that misreporting increases in ∆α (see Table 3 in Appendix B.2

for details). This can be interpreted as follows. Lower (higher) values of ∆α provide less (more)

justification to misreport, such that customers experience a higher (lower) lying aversion. For

example, in our experimental study, we observed that in the conditions with a higher probability

to gain priority by means of truth-telling (i.e., which reduces ∆α), the misreporting prevalence

was indeed lower. In this case, people arguably have less justification to misreport since they are

presented with the chance to obtain priority without the need to misreport. The assumption,

τ(1)< θ̄, ensures that not everyone misreports, which is consistent with our experimental results,

the extant literature, and our motivating examples. To see this, recall that θ̄ represents the upper

bound of the support for the lying aversion distribution. Since τ(∆α) increases in ∆α, if τ(1)< θ̄

then it follows that Φ(τ(∆α))< 1, that is, that not everyone misreports.

We will see in Proposition 1 that the semi-elasticity (Wooldridge 2015) of misreporting behaviour,

S, arises naturally in the characterization of the optimal policy:

S(∆α) =
∂(1−Φ(τ(∆α)))/∂∆α

1−Φ(τ(∆α))
=
τ ′(∆α)φ(τ(∆α))

1−Φ(τ(∆α))
=−τ ′(∆α)h(τ(∆α))≤ 0, (9)

where h(·) is the failure rate of the lying-aversion distribution. This metric measures the percentage

change in the proportion of honest claims (from L types) in terms of a change in ∆α. Intuitively,
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it measures how sensitive the misreporting behaviour of customers is to changes in the routing

probabilities ∆α. Based on this, we further make an assumption on τ(∆α) to ensure the unimodality

of the waiting cost; see Appendix A.2.

Assumption 2. We assume that τ ′′(∆α) satisfies ∆αS ′(∆α)−S(∆α)> 0.

This assumption is not restrictive since it allows the misreporting probability to change in ∆α

in a strictly convex, strictly concave, or in a linear fashion.

Overall, our lying aversion model in (7) captures the fact that while customers have a higher

incentive to lie when the difference in waiting times between the queues is increased, they also

feel worse about lying because the stakes are higher. Thus, variations in waiting times do not

affect misreporting. At the same time, changes in the probability to get priority affect customer

misreporting behaviour as it shapes customers’ lying aversion directly according to τ(∆α). Finally,

in Appendix B.4, we conduct a structural estimation analysis where we propose a specification for

τ(∆α) as per our Assumptions 1 and 2 that achieves a better fit to the experimental data and a

better predictive ability in comparison to the described sensible lying costs specifications.

7. Optimal Scheduling Policy

Based on problems (1) and (7), and under Assumptions 1 and 2, in this section, we derive the

optimal routing probabilities, α∗H and α∗L, which minimize the expected waiting cost in the system,

at equilibrium. In Appendix D, we derive sufficient conditions for which our results hold under

more general specifications for customers misreporting probability or under different formalizations

for the customer problem.

7.1. Over and Under-Prioritization Trade-Off

We begin by elaborating on the main trade-off that the Manager faces, to build intuition. In the

Manager’s problem (1), there is an underlying cost asymmetry between the cost that arises from

under-prioritization (i.e., H type customers who are placed in the regular queue), and from over-

prioritization (i.e., L type customers who are placed in the priority queue). To see this, we let δH =
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P(K = 2|X =H) be the steady-state under-prioritization probability and δL = P(K = 1|X =L) be

the steady-state over-prioritization probability, given by:

δH = (1−αH)P(Y =H|X =H) + (1−αL)P(Y =L|X =H), (10)

δL = αHP(Y =H|X =L) +αLP(Y =L|X =L). (11)

For any given customer reporting behaviour P(Y = y|X = x), we study, in the following lemma,

the monotonicity of the expected waiting cost as a function of those prioritization errors.

Lemma 1. The expected waiting cost in the system C in (1) is increasing in both δH and δL.

Moreover, it is more sensitive to δH than δL, i.e., ∂C
∂δH

> ∂C
∂δL

> 0 if, and only if, δH + δL < 1. The

additional sensitivity to δH over δL, i.e., ∂C
∂δH
− ∂C

∂δL
, increases in ρ.

Lemma (1) is similar to Proposition 7 in Singh et al. (2022) and Proposition 2 in Argon and

Ziya (2009). We repeat this result here to draw parallels between our setting, where customers

are strategic in their claims, and the models in those papers where customers do not have the

ability to influence their priority classifications. Consistent with intuition, Lemma 1 shows that

the waiting cost increases strictly in the prioritization errors δH and δL under a condition which,

we will see, is satisfied at optimum; see Proposition 1 in the next section. Importantly, Lemma 1

demonstrates the asymmetric impact of under-prioritization versus over-prioritization errors, par-

ticularly in congested systems: Under-prioritization is more costly than over-prioritization. Given

this asymmetry in the Manager’s trade-off, we will see that the optimal policy allows to eliminate

the under-prioritization error, while minimizing the over-prioritization error.

7.2. Game Equilibrium

Recalling from equation 9 that S(∆α) represents a measure of how sensitive the misreport-

ing/honest behaviour of customers is to changes in ∆α, we now present the equilibrium that arises

in the game.

Proposition 1. Based on problems (1) and (7), under Assumptions 1 and 2, there exists a

unique equilibrium which arises in the game between the customers and the Manager:
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(a) All customers with true type X =H make a truthful claim Y =H.

(b) A fraction Φ(τ(α∗H − α∗L)) < 1 of customers with true type X = L are dishonest i.e., claim

Y =H.

(c) The optimal routing policy is to assign high priority to all high-claim customers, i.e., α∗H = 1,

and to assign high priority to low-claim customers with probability α∗L. We have that α∗L = 0

if, and only if, −S(1)≤ 1, and α∗L ∈ (0,1) as the unique solution to 1 + (1−α∗L)S(1−α∗L) = 0,

otherwise.

Consistent with intuition, part (a) of Proposition 1 shows that customers of type X =H always

claim their true type. Part (b) shows that only a proportion (bounded away from 1) of X =L type

customers misreport. This result is consistent with the extant literature and with our motivating

examples. Finally, part (c) shows that the optimal policy is not FCFS (which corresponds to

αH = αL = 1). Indeed, as long as there is some level of honesty in the system, the Manager is able

to extract, at equilibrium, some information from customer claims about the true customer types:

P∗(X =H|Y =H) =
pH

pH + pLΦ(τ(α∗H −α∗L))
> pH ,

P∗(X =L|Y =L) = 1> pL,

where we recall that pH and pL are the proportions of true H and L types. This shows that due to

customers’ lying aversion, the Manager can still extract some information from the customers’ own

claims, despite the prevalence of misreporting. This is a useful insight for managers. For example,

in one of our motivating examples, the National Health Service, anticipating dishonest claims from

patients, dropped a chat-bot symptom checker application designed to aid in booking appointments

(Heather 2017). Our theoretical results provide insight into when this may, or may not, be a good

decision.

7.3. Honor Policy and Upgrading Policy

From Proposition 1, we can see that P∗(Y = H|X = H) = 1 and P∗(Y = H|X = L) = Φ(τ(αH −

αL))< 1. Thus, at equilibrium, from (10) and (11), we can see that the Manager faces the following

prioritization errors:

δH = 1−αH , (12)
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δL = αHΦ(τ(αH −αL)) +αL(1−Φ(τ(αH −αL))). (13)

In part (c) of Proposition 1, we see that, on one hand, the system Manager should always set α∗H =

1, i.e., to eliminate the under-prioritization error δH ; see (12), even if this allows more misreporting

customers to jump the queue; see (13). This is driven by the asymmetry between the costs of

under-prioritization and over-prioritization in Lemma 1. This shows that Managers should exert

caution when adopting strategies to mitigate misreporting at the expense of under-prioritizing. For

example, this was the case in the groceries delivery services example of the introduction, where

it took too long to verify the vulnerability status of people in order to give them priority slots to

gain access to food (Syal 2021).

On the other hand, in part (c) of Proposition 1, we see that, the Manager uses α∗L ≥ 0 in order

to minimize the over-prioritization error δL. From (13), we find two effects for increasing αL. First,

increasing αL leads to an increase in the second part of δL due to a higher proportion of honest

L customers (1− Φ(τ(αH − αL))) being upgraded to the high-priority queue. Second, increasing

αL leads to a decrease in the first part of δL since it allows to incentivize more honesty : A lower

proportion of L customers Φ(τ(αH − αL)) misreport due to their lying aversion. Therefore, to

minimize the over-prioritization error δL, the Manager should balance that tension optimally by

deciding when to incentivize more honesty from customers.

In part (c) of Proposition 1, we see that upgrading is optimal whenever −S(1) > 1, which

intuitively means that customers’ responsiveness for upgrading is sufficiently strong so that it

manages to decrease the overall cost. Finally, if the population under analysis does not respond

to the upgrading control sufficiently, that is whenever −S(1) ≤ 1, Proposition 1 prescribes an

honor policy, where priorities are given according to customer claims. This provides support to the

honor-based scheduling policies observed in practice. For example, the UK used an online booking

system to get access to COVID-19 tests at home, which relied on public honesty in claiming their

employment status (Weaver and Proctor 2020).
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7.4. Upgrading as a Deviation from the cµ Rule

It is well known that when customer types are fully known, the celebrated cµ rule minimizes

the expected cost in the system. In our game, the true priority level of an arriving customer

(equivalently, the true index cµ) is unknown to the system Manager. Based on customer claims,

in equilibrium, the system Manager can infer the expected cµ customer index, I(y) = cHµP(X =

H|Y = y) + cLµP(X = L|Y = y). It is easy to see that I(H)> I(L) if, and only if, cH > cL, which

is our assumption throughout this paper. When the uncertainty in customer types is exogenous,

Argon and Ziya (2009) argue that customers should be prioritized in decreasing order of the

expected cµ indices. In our model, upgrading is optimal because customer claims are endogenous:

By allowing for some L claim customers to be in the priority queue (i.e., by deviating from the

cµ rule), the Manager incites customers to be more honest in their reporting, which ultimately

benefits the system as a whole.

7.5. Performance of Optimal Scheduling Policy

We see that the optimal α-policy is never a FCFS policy. Due to customers’ lying costs, the

Manager can always extract some information from customer claims, and use it to assign service

priority. Indeed, the FCFS policy would have been optimal in a setting where all L type customers

misreport their types. Yet, we still do not know how much better the optimal α-policy performs

relative to the FCFS policy. We also do not know how well it performs relative to the First-Best

(FB) policy. In our game, the FB policy is the one that minimizes the system’s expected delay cost

if the Manager can observe the actual customer types. It is well known that for M/M/1 systems,

the cµ priority rule (i.e., H-type customers receive absolute priority over L type customers) is the

FB. In our problem, since the Manager cannot observe customer types, we have that the optimal

α-policy would be FB only if all L type customers are fully honest.

In Appendix E, to gain insight into the performance of the optimal α-policy, we study the

percentage cost increase that it yields over the FB policy. We characterize several properties of that

metric in Proposition 3 there. We also present a numerical analysis that characterizes its relation



Rodriguez, Ibrahim, and Zhan: On Customer (Dis)honesty in Unobservable Queues
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 31

with customer misreporting behaviour. We find that the optimal α-policy performs well, and that

its performance does not vary much as system parameters change. We also observe that the optimal

policy performs increasingly better than a FCFS policy as congestion increases. We find that

when customers are sufficiently honest, the Manager can guarantee very good system performance

by using an honor policy. Importantly, we find that if the Manager faces a sufficiently dishonest

population, an upgrading policy is well warranted to improve performance. This highlights the

importance of leveraging customers’ lying aversion in scheduling decisions.

7.6. Practical Considerations

In the lying aversion literature, considerable differences in lying proportions, across studies, are

commonly observed (Janezic 2020). In Appendix C, we discuss such lying heterogeneity and present

an additional experiment with a highly honest cohort of participants. Our model is sufficiently

general to capture such variability in the prevalence of misreporting across different customer

populations which differ in their lying aversion characteristics (e.g., lying aversion distribution and

parametrizations). Indeed, in Proposition 1, the prescribed optimal policy is contingent on lying-

aversion properties (subsumed by the semi-elasticity of honest behaviour metric) which would be

specific to each customer population. In practice, such lying aversion properties may be unknown

or not directly observable to the Manager. Moreover, easy-to-measure variables such as age, gender,

country or social preferences have been found to have only limited predictive power for lying

behaviour (Abeler et al. 2019, Janezic 2020). It is then natural to ask: In practice, how can the

Manager determine the optimal policy based, e.g., on customer claim data alone?

We answer that question in Appendix G: We study how the Manager can determine the optimal

upgrading policy by relying solely on customer claim data. In particular, we propose different

data-driven heuristics to determine the optimal upgrading policy, and we conduct an extensive

simulation analysis to illustrate their respective performances. We find that without knowledge of

the true misreporting probability function, the proposed heuristics are indeed able to implement

upgrading policies whose performances are very close to that of the true optimal policy. We defer
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the reader to Appendix G for further details, where we discuss and compare the proposed heuristics,

and point to further steps that Managers can take to improve the observed performance in the

analysis.

8. Conclusions

We studied the extent to which people misreport their private information in a two-class priority

queueing system, where priorities are assigned according to customer claims, and where these

claims are not verifiable nor punishable. Although standard economic theory predicts that all

customers will claim that they should be given high priority, we showed, through the analysis of

a theoretical queueing model and controlled experiments, that human behaviour deviates far from

this prediction. We theorized and experimentally tested the intrinsic costs that people incur when

they lie. We studied the consequences of uncertainty (probabilistic routing) on lying, and found

that the scheduling policy, rather than the waiting times themselves, significantly impacts lying

behaviour.

Priority systems which rely on customer claims are prevalent in practice. Our results highlight

the informative value of those claims, even in systems where customers can lie with total impunity.

Thus, we provided theoretical and experimental evidence that customer claims should be sought by

the system Manager. This is particularly relevant to priority settings where market mechanisms,

e.g., pricing the relevant services, are not applicable. In particular, we found theoretical evidence

that supports the current honor scheduling system (routing customers according to their claims)

which is in place in many real settings. Additionally, we found that, when the lying aversion

cost is sufficiently elastic, a different prioritization rule, which deviates from the celebrated cµ

rule, is optimal. Essentially, this rule prescribes upgrading some low-priority claims to the high-

priority class in order to incentivize honesty in the system as a whole. We highlight that there

is no guarantee, with other scheduling-policy implementations, to be able to identify operational

controls that incentivize more honesty. One contribution of our work is, therefore, that we both

experimentally and theoretically show that the considered α-policy provides a useful operational

control (i.e., probabilistic routing) to mitigate dishonesty.
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Limitations and future research. The study of untruthfulness in queues is rich and strongly moti-

vated by practice. We hope that our work will spark more interest in this domain. Our experimental

results are based on simple two-priority queueing settings. We advocate conducting more experi-

mental work to further understand the role of intrinsic preferences for truth-telling in the reporting

behaviour of people in more complicated queueing settings. Future work can, for example, inves-

tigate the extent to which people report untruthfully in a multi-priority queueing system, and

unveil the relevant determinants in that case. While we foresee that some people will be honest and

others will be untruthful, it is not clear, a priori, how customer claims will be distributed across

the multiple priority queues: For example, will there be partial lying in this case?

In this paper, we focused on priority settings where the dynamic state of the queue is unobservable

to customers, i.e., the length of the queue and the real-time behaviour of other customers. We

also assumed the absence of reputation concerns since the service setting involves an anonymous,

one-shot, type of interaction with the Manager. These properties are common features shared by

many priority queueing settings, but certainly not all systems. Future research could focus on

understanding customer untruthfulness in priority queues where the dynamic state of the queue is

observable, e.g., in emergency departments where patients may exaggerate their own symptoms at

the triage stage to receive medical service faster. In such settings, where customers observe each

other, reputation and negative externality concerns may play a major role. Also, as mentioned

above, this work is limited to settings where customers have a rare or one-shot interaction with the

service system, like the ones in our motivating examples. We advocate that future research studies

the effect of repeated interactions, where we envision that other behavioural factors may play an

important role in the misreporting behaviour.

Finally, we believe that the study of lying behaviour under different scheduling policies is an

interesting and important future research direction. In this work, we have restricted attention to

the class of α-policies and proposed a lying cost model tied to such class of policies. More generally,

different policy implementations that tap into different behavioural factors, may be considered,
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and more general lying cost models that accommodate different implementations can be inves-

tigated. For instance, in this work, we have observed that outcome uncertainty affects customer

misreporting behaviour. Thus, one might explore different risk-conscious utility specifications (e.g.,

mean-standard deviation utility, cumulative prospect theory) that capture risk aversion not neces-

sarily tied to a particular policy implementation. An alternative approach, based on our proposed

lying-cost model, is to investigate a more general lying cost formula θ(%)cx(Wx −Wy)
+, where %

represents the specific policy parameters under consideration (in our study, %=α). For instance,

based on Coffman Jr and Mitrani (1980)’s proposed implementation, the Manager would define

switching periods of time under which certain claims are prioritized. In this case, future research

can examine how misreporting behaviour is affected by the likelihood of arriving when a specific

claim type is prioritized.
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Appendix A: Technical Proofs

A.1. Lemma 1

Proof. Recall that, by assumption, we have that cH > cL. We can write the expected waiting cost in the

system (1) as:

C(δH , δL) = g(ρ)f(δH , δL),

where

g(ρ) =

(
ρ2

1− ρ

)
,

f(δH , δL) =
pHcH(1− ρ(1− δH)) + pLcL(1− ρδL)

pH(1− ρ(1− δH)) + pL(1− ρδL)
.

After some algebraic manipulations we find:

∂f

∂δH
=

ρpHpL(cH − cL)(1− ρδL)

(pH(1− ρ(1− δH)) + pL(1− ρδL))2
,

∂f

∂δL
=

ρpHpL(cH − cL)(1− ρ(1− δH))

(pH(1− ρ(1− δH)) + pL(1− ρδL))2
.

Since ρ∈ (0,1) and δL, δH ∈ [0,1], it follows that ∂C
∂δH

= g(ρ) ∂f

∂δH
> 0 and ∂C

∂δL
= g(ρ) ∂f

∂δL
> 0.

We define ∆f ′
.
= ∂f

∂δH
− ∂f

∂δL
. After some algebraic manipulations we find:

∆f ′ =
pHpL(cH − cL)ρ2(1− δH − δL)

(pH(1− ρ(1− δH)) + pL(1− ρδL))2
.

Since ρ∈ (0,1) we have that ∆C′ = ∂C
∂δH
− ∂C

∂δL
= g(ρ)∆f ′ > 0 if and only if δH + δL < 1.

Finally, taking the following derivatives:

∂g(ρ)

∂ρ
=

2− ρ
(1− ρ)ρ

g(ρ),

∂∆f ′

∂ρ
=

2pHpL(cH − cL)ρ(1− δH − δL)

(pH(1− ρ(1− δH)) + pL(1− ρδL))3
,

and recalling that ∆C′ = ∂C
∂δH
− ∂C

∂δL
= g(ρ)∆f ′, we have that

∂∆C′

∂ρ
=
∂g(ρ)

∂ρ
∆f ′+ g(ρ)

∂∆f ′

∂ρ
.

Since ρ ∈ (0,1), we have that g(ρ)> 0 and ∂g(ρ)

∂ρ
> 0. Moreover, notice that the sign of both ∂∆f ′

∂ρ
,∆f is

dictated by the sign of 1− δH − δL. It follows that ∂∆C′
∂ρ

> 0 if and only if ∂∆f ′

∂ρ
,∆f ′ > 0 ⇐⇒ δH + δL < 1.
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A.2. Proposition 1

Proof. There are 3 different cases to analyse: (1) when αH <αL, (2) when αH = αL, and (3) when αH >αL.

Based on customers problem (7) it is easy to see that in the first case since WL <WH , all L type customers

report their type and a proportion Φ(τ(αL − αH))< 1 of H type customers misreport (note that here αH

represents the probability to get a benefit through honest means). For any αH <αL, L type customers are

given priority over H type customers, recall that cH > cL thus the waiting cost in the system is higher than

in a FCFS policy. Also, for the second case since WL =WH , irrespective of customer claiming behaviour, the

waiting cost in the system is equal to a FCFS policy. We now investigate the third case in detail.

For αH >αL we have that all H type customers report their type and a proportion Φ(τ(∆α))< 1 of L type

customers misreport in equilibrium, where ∆α= αH −αL. This comes from the fact that the misreporting

probability (8) does not depend on waiting times (otherwise the customer equilibrium would come from

the solution of a fixed point problem). This result is intuitive since customers can affect each other only

through the waiting times. Since waiting times do not affect customer misreporting behaviour, customers

make their decisions irrespective of how others behave. Based on the above, the Manager anticipates the

following prioritization error probabilities:

δH(αH , αL) = 1−αH ,

δL(αH , αL) = αL + ∆αΦ(τ(∆α)).

In this proof, for any function q(·), we use q′z(·) and q′′z (·) to denote, respectively, the first and second

partial derivative of q(·) with respect to z. Also, in this proof using the chain rule, we express the partial

derivative ∂Φ(τ(∆α))

∂αH
as φ(τ(∆α))τ ′∆α(∆α), and ∂Φ(τ(∆α))

∂αL
as −φ(τ(∆α))τ ′∆α(∆α).

The Manager defines the routing probabilities αH , αL ∈ [0,1] in order to minimize the expected waiting

cost C in the system which can be written as:

C = c · f(αH , αL),

where

c=

(
ρ2

1− ρ

)
> 0,

f(αH , αL) =
pHcH(1− ρ(1− δH(αH , αL))) + pLcL(1− ρδL(αH , αL))

pH(1− ρ(1− δH(αH , αL))) + pL(1− ρδL(αH , αL))
,
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f ′αH (αH , αL) =
d(αH , αL)γ(αH , αL)

g(αH , αL)
,

f ′αL(αH , αL) =
d(αH , αL)(1− ραH)κ(αH , αL)

g(αH , αL)
,

d(αH , αL) = pHpLρ(cH − cL)(1−Φ(τ(∆α)))> 0,

g(αH , αL) = (pH(1− ρ(1− δH(αH , αL))) + pL(1− ρδL(αH , αL)))2 > 0,

γ(αH , αL) =−(1− ραL) + (1− ραH)∆ατ ′∆α(∆α)h(τ(∆α)),

κ(αH , αL) = 1−∆ατ ′∆α(∆α)h(τ(∆α)),

κ′αL(αH , αL) = ∆αh′τ(∆α)(τ(∆α))(τ ′∆α(∆α))2 +h(τ(∆α))(τ ′∆α(∆α) + ∆ατ ′′∆α(∆α))≥ 0,

h(τ(∆α)) =
φ(τ(∆α))

1−Φ(τ(∆α))
.

We want to solve the problem: Min c · f(αH , αL), subject to the constraints: αL ≥ 0 ⇐⇒ −αL ≤ 0;αL ≤

αH ⇐⇒ αL−αH ≤ 0; and αH ≤ 1 ⇐⇒ αH − 1≤ 0. For this, we construct the lagrangian: L= cf(αH , αL)−

µ1(αL) +µ2(αL−αH) +µ3(αH − 1), and derive the KKT conditions:

Stationarity: L′αH = cf ′α∗
H
−µ2 +µ3 = 0; L′αL = cf ′α∗

L
−µ1 +µ2 = 0.

Complementary Slackness: µ1(−α∗L) = 0; µ2(α∗L−α∗H) = 0; µ3(α∗H − 1) = 0.

Dual Feasibility: µ1, µ2, µ3 ≥ 0.

Primal Feasibility: α∗L ≥ 0; α∗L ≤ α∗H ; α∗H ≤ 1.

Potential Candidate 1: (α∗H = 1, α∗L = 0).

Complementary Slackness: µ1 6= 0⇒ α∗L = 0; µ2 = 0; µ3 6= 0⇒ α∗H = 1.

Stationarity: µ3 = −cf ′α∗
H

= − cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= − cd(1,0)γ(1,0)

g(1,0)
; µ1 = cf ′α∗

L
=

cd(α∗H ,α
∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=

cd(1,0)(1−ρ)κ(1,0)

g(1,0)
.

Dual Feasibility: µ3 ≥ 0 ⇐⇒ cd(1,0)γ(1,0)

g(1,0)
≤ 0 ⇐⇒ γ(1,0)≤ 0 ⇐⇒ τ ′∆α(1)h(τ(1))≤ 1/(1− ρ); µ1 ≥ 0 ⇐⇒

cd(1,0)(1−ρ)κ(1,0)

g(1,0)
≥ 0 ⇐⇒ κ(1,0)≥ 0 ⇐⇒ τ ′∆α(1)h(τ(1))≤ 1.

Primal Feasibility: α∗L ≥ 0; α∗L ≤ α∗H ; α∗H ≤ 1.

Potential Candidate 2: (α∗H = 1, α∗L ∈ (0,1)).

Complementary Slackness: µ1 = 0; µ2 = 0; µ3 6= 0⇒ α∗H = 1.
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Stationarity: cf ′α∗
L

= 0 ⇐⇒ cd(α∗H ,α
∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=

cd(1,α∗L)(1−ρ)κ(1,α∗L)

g(1,α∗
L

)
= 0 ⇐⇒ κ(1, α∗L) = 0 ⇐⇒ 1−

(1−α∗L)τ ′∆α(1−α∗L)h(τ(1−α∗L)) = 0; µ3 =−cf ′α∗
H

=− cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(1,α∗L)γ(1,α∗L)

g(1,α∗
L

)
. We can see that

κ(1,1) > 0 and that κ(1,0) < 0 whenever τ ′∆α(1)h(τ(1)) > 1. In this case, since κ(αL) is continuous and

strictly increasing in αL, it follows that there is a unique α∗L ∈ (0,1) such that κ(1, α∗L) = 0.

Dual Feasibility: µ3 ≥ 0 ⇐⇒ cd(1,α∗L)γ(1,α∗L)

g(1,α∗
L

)
≤ 0 ⇐⇒ γ(1, α∗L)≤ 0 ⇐⇒ −ρ(1−α∗L)≤ 0.

Primal Feasibility: α∗L > 0 ⇐⇒ τ ′∆α(1)h(τ(1))> 1; α∗L ≤ α∗H ; α∗H ≤ 1.

Potential Candidate 3: (α∗H ∈ (α∗L,1), α∗L = 0).

Complementary Slackness: µ1 6= 0⇒ α∗L = 0; µ2 = 0; µ3 = 0.

Stationarity: cf ′α∗
H

= 0 ⇐⇒ cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ cd(α∗H ,0)γ(α∗H ,0)

g(α∗
H
,0)

= 0 ⇐⇒ γ(α∗H ,0) = 0 ⇐⇒

τ ′∆α(α∗H)h(τ(α∗H)) = 1/(α∗H(1− ρα∗H)); µ1 = cf ′α∗
L

=
cd(α∗H ,α

∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=

cd(α∗H ,0)(1−ρα∗H)κ(α∗H ,0)

g(α∗
H
,0)

.

Dual Feasibility: µ1 ≥ 0 ⇐⇒ cd(α∗H ,0)(1−ρα∗H)κ(α∗H ,0)

g(α∗
H
,0)

≥ 0 ⇐⇒ κ(α∗H ,0)≥ 0 ⇐⇒ τ ′∆α(α∗H)h(τ(α∗H))≤ 1/α∗H ,

which is never the case since τ ′∆α(α∗H)h(τ(α∗H)) = 1/(α∗H(1− ρα∗H)) and ρ∈ (0,1) and α∗H ∈ (0,1).

Potential Candidate 4: (α∗H ∈ (α∗L,1), α∗L ∈ (0, α∗H)).

Complementary Slackness: µ1 = 0; µ2 = 0; µ3 = 0.

Stationarity: cf ′α∗
L

= 0 ⇐⇒ cd(α∗H ,α
∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ κ(α∗H , α

∗
L) = 0 ⇐⇒ (α∗H − α∗L)τ ′∆α(α∗H −

α∗L)h(τ(α∗H − α∗L)) = 1; cf ′α∗
H

= 0 ⇐⇒ cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ cd(α∗H ,α

∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ γ(α∗H , α

∗
L) =

0(α∗H −α∗L)τ ′∆α(α∗H −α∗L)h(τ(α∗H −α∗L)) =
1−ρα∗L
1−ρα∗

H
6= 1.

Potential Candidate 5: (α∗H = α∗L ∈ (0,1)).

Complementary Slackness: µ1 = 0; µ2 6= 0⇒ α∗H = α∗L; µ3 = 0.

Stationarity: µ2 = cf ′α∗
H

=
cd(α∗H ,α

∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(α∗H ,α

∗
L)(1−ρα∗L)

g(α∗
H
,α∗
L

)
.

Dual Feasibility: µ2 ≥ 0 ⇐⇒ − cd(α∗H ,α
∗
L)(1−ρα∗L)

g(α∗
H
,α∗
L

)
≥ 0 ⇐⇒ −(1− ρα∗L)≥ 0 which is never the case.

Potential Candidate 6: (α∗H = α∗L = 0).

Complementary Slackness: µ1 6= 0⇒ α∗L = 0; µ2 6= 0⇒ α∗H = α∗L; µ3 = 0.

Stationarity: µ2 = cf ′α∗
H

=
cd(α∗H ,α

∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(0,0)

g(0,0)
.

Dual Feasibility: µ2 ≥ 0 ⇐⇒ − cd(0,0)

g(0,0)
≥ 0 which is never the case.
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Potential Candidate 7: (α∗H = α∗L = 1).

Complementary Slackness: µ1 = 0; µ2 6= 0⇒ α∗H = α∗L; µ3 6= 0⇒ α∗H = 1.

Stationarity: µ2 =−cf ′α∗
L

=− cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(1,1)(1−ρ)

g(1,1)
.

Dual Feasibility: µ2 ≥ 0 ⇐⇒ − cd(1,1)(1−ρ)
g(1,1)

=−(1− ρ)≥ 0 which is never the case.

We can see that only candidates 1 and 2 comply with the KKT necessary conditions and that both

candidates are mutually exclusive: candidate 1 (i.e., α∗H = 1, α∗L = 0) holds whenever τ ′∆α(1)h(τ(1)) ≤ 1

whereas candidate 2 (i.e., α∗H = 1, α∗L ∈ (0,1) such that 1 − (1 − α∗L)τ ′∆α(1 − α∗L)h(τ(1 − α∗L)) = 0) holds

whenever τ ′∆α(1)h(τ(1))> 1. We can see that in both candidates we have that α∗H = 1, which minimizes the

under-prioritization error δH . Also, based on this, we can see that α∗L = 0 minimizes the over-prioritization

error δL whenever τ ′∆α(1)h(τ(1)) ≤ 1, and α∗L ∈ (0,1) as above minimizes the over-prioritization error δL

whenever τ ′∆α(1)h(τ(1))> 1. From Lemma 1 we know that the waiting cost strictly increases in both δH and

δL, which shows that the identified candidates minimize the delay cost in the system.

Notice that in this case, we have that all high type customers claim their type and that a proportion equal

to Φ(τ(1−α∗L))< 1 of low type customers misreport. When the Manager sets the routing prioritization policy

α∗H = 1, α∗L ∈ [0,1) the prioritization error probabilities are δ∗H = 0 and δ∗L = α∗L + (1−α∗L)Φ(τ(1−α∗L))< 1.

It is easy to see from Lemma 1, that this performs better than a FCFS discipline: for a FCFS (αH = αL = 1)

we have that δH = 0 and δL = 1. Finally, since the routing policies in cases 1 (i.e., αH < αL) and 2 (i.e.,

αH = αL) perform respectively worse/same as a FCFS policy, thus we conclude that the routing policy in

this case 3 performs better, and thus arises in equilibrium.
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Appendix B: Further Details for Experimental Investigation

B.1. Experimental Results per Condition

Table 2 Proportions and half widths of 95% confidence intervals of participants who reported the die roll 5

across experimental conditions.

Condition P(Claim 5)

1 0.29± 0.06

2 0.35± 0.06

3 0.34± 0.06

4 0.22± 0.05

5 0.29± 0.06

6 0.29± 0.06

7 0.28± 0.06

8 0.23± 0.05

9 0.24± 0.05

B.2. Logistic Regressions

We run logistic regressions where we control for age and gender. We estimate the effects on the probability

to claim the number 5 (see Table 3). We conduct likelihood ratio tests between Model (2a) and Model (3a)

(χ2 = 0.98, df = 1, p-value = 0.32), and Model (2a) and Model (4a) (χ2 = 2.8, df = 2, p-value = 0.24) which

show that the fit of Model (2a) does not significantly improve by adding the ∆W predictor in Model (3a)

and the interaction term in Model (4a). Finally, the likelihood ratio test between Model (2a) and the null

model including only an intercept term (χ2 = 13.37, df = 3, p-value 0.004) shows that the fit of Model (2a)

is significantly better.
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Table 3 Logistic Regressions

P(Claim 5)

(1a) (2a) (3a) (4a)

(Intercept) -1.03*** -1.19*** -1.29*** -1.09***

(0.21) (0.20) (0.22) (0.27)

Age 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)

GenderM 0.13 0.13 0.13 0.14

(0.10) (0.10) (0.10) (0.10)

∆W 0.01 - 0.01 -0.01

(0.01) - (0.01) (0.02)

∆α - 0.45*** 0.45*** 0.09

- (0.13) (0.13) (0.30)

∆α ∗∆W - - - 0.04

- - - (0.03)

N 2021 2021 2021 2021

AIC 2398.17 2387.79 2388.81 2388.99

Pseudo R2 0.00 0.01 0.01 0.01

Pseudo R2 † 0.01 0.23 0.25 0.25

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

† We compute McFadden’s pseudo R2 at the aggre-

gate experimental condition level. Binary individual

responses are grouped at the experimental condition j ∈

{0, · · · ,9} level with sample size nj , such that the num-

ber of participants that claim the number 5 is captured

by a binomial random variable kj , and the log likelihood

is given by
∑

j
log
((
nj
kj

)
p
kj
j (1− pj)nj−kj

)
.
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We also run logistic regressions with the covariate αL instead of ∆α. We are able to do this because αH = 1

was fixed across all experimental conditions such that ∆α= 1−αL. The results are presented in Table 4.

Table 4 Logistic Regressions

P(Claim 5)

(1a) (2a) (3a) (4a)

(Intercept) -1.03*** -0.73*** -0.84*** -1.00***

(0.21) (0.19) (0.22) (0.25)

Age 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)

GenderM 0.13 0.13 0.13 0.14

(0.10) (0.10) (0.10) (0.10)

∆W 0.01 - 0.01 0.03

(0.01) - (0.01) (0.02)

αL - -0.45*** -0.45*** -0.09

- (0.13) (0.13) (0.30)

αL ∗∆W - - - -0.04

- - - (0.03)

N 2021 2021 2021 2021

AIC 2398.17 2387.79 2388.81 2388.99

Pseudo R2 0.00 0.01 0.01 0.01

Pseudo R2 † 0.01 0.23 0.25 0.25

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

† We compute McFadden’s pseudo R2 at the aggre-

gate experimental condition level. Binary individual

responses are grouped at the experimental condition j ∈

{0, · · · ,9} level with sample size nj , such that the num-

ber of participants that claim the number 5 is captured

by a binomial random variable kj , and the log likelihood

is given by
∑

j
log
((
nj
kj

)
p
kj
j (1− pj)nj−kj

)
.

Finally, we also run regressions with the covariate WL = αLW1 + (1− αL)W2, where recall that W1 = 2

min was fixed. In Table 5 we present the results:
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Table 5 Logistic Regressions

P(Claim 5)

(1a) (2a) (3a) (4a) (5a)

(Intercept) -0.73*** -0.86*** -1.23*** -1.11*** -1.03***

(0.19) (0.23) (0.20) (0.22) (0.27)

Age 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)

GenderM 0.13 0.13 0.14 0.14 0.14

(0.10) (0.10) (0.10) (0.10) (0.10)

αL -0.45*** -0.45*** - - -0.22

(0.13) (0.13) - - (0.20)

W2 - 0.01 - -0.02 -

- (0.01) - (0.01) -

WL - - 0.04*** 0.05*** 0.03

- - (0.01) (0.01) (0.02)

N 2021 2021 2021 2021 2021

AIC 2387.79 2388.81 2386.53 2387.09 2387.32

BIC 2410.24 2416.87 2408.98 2415.15 2415.38

Pseudo R2 0.00 0.01 0.01 0.01 0.01

Pseudo R2 † 0.23 0.25 0.22 0.23 0.24

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

†We compute McFadden’s pseudo R2 at the aggregate experimen-

tal condition level. Binary individual responses are grouped at the

experimental condition j ∈ {0, · · · ,9} level with sample size nj , such

that the number of participants that claim the number 5 is cap-

tured by a binomial random variable kj , and the log likelihood is

given by
∑

j
log
((
nj
kj

)
p
kj
i (1− pj)nj−kj

)
.

First, we notice that the WL covariate is significant, which is intuitive since it is a function of the upgrading

probability, αL. We notice that in model (4a), where we control for the waiting time in the long queue W2, the

coefficient for such W2 is negative, close to 0, and not significant. Importantly, since WL = 2αL+(1−αL)W2,

the fact that W2 does not influence misreporting shows that the majority of explainable lying behaviour
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can be attributed to the upgrading probability. Now, we observe that the AIC and BIC of model (3a) are

lower than that of model (1a), which is consistent with intuition since both models capture the effect of the

upgrading probability, but model (3a) in addition captures the effect of the waiting time (even though it is

a very small effect). Importantly, we run a Voung test between models (1a) and (3a) for the hypothesis that

model (3a) fits the data better than model (1a) (z =−0.254, p-value = 0.4), which is similar to a Likelihood

ratio test but for non-nested models (Vuong 1989) - the 95% confidence intervals for the AIC and BIC

difference between models are given by (−8.462 < AICdiff < 10.982) and (−8.462 < BICdiff < 10.982).

This result shows that we cannot reject the null hypothesis that both model fits are equal. Finally, a likelihood

ratio test between model (1a) and (5a) (χ2 = 2.47, df = 1, p-value = 0.12) shows that the fit of Model (1a)

does not significantly improve by adding the WL predictor. Overall this provides further support for the

claim that the great majority of explainable lying behaviour can be attributed to the upgrading probability.

Finally, we have seen that the difference in waiting times ∆W does not affect misreporting behaviour.

The fact that the coefficient for W2 is not significant and close to 0 shows that the waiting time in the Long

Queue does not present an absolute effect on misreporting behaviour neither. Related to this, we want to

highlight that our experimental data does not allow to test whether the waiting time in the Short Queue

W1 presents an absolute effect on misreporting since we kept W1 fixed in our experimental conditions. This

is noteworthy since in our proposed model, we make the assumption that W1 does not affect misreporting.

Based on this, to test the implications of this assumption, in Appendix F we conduct a numerical analysis

where we identify the optimal α-policy that arises in a setting where the lying probability is a function of

∆W = ρ

1−ρW1, and compare it with our current policy (that does not include the waiting time effect on

misreporting).

B.3. Robustness Checks

B.3.1. Non-parametric tests: The effect of waiting times. We run a Generalized Cochran-Mantel-

Haenszel test (Agresti 2003) for the conditional association between the proportion of participants that

reported the number 5 and the ∆W condition, conditional on the levels of the ∆α condition. We find that

the conditional association is not significant (M2 = 1.36, df = 2, p-value = 0.51). We also run a Chi-square

test for the marginal association between the proportion of participants that reported the number 5 and

the ∆W condition. We find that the marginal association is not significant (χ2 = 1.22, df = 2, p-value =
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0.54). Moreover, for each ∆α level (i.e., 0.1, 0.5, 1), we run Jonckheere–Terpstra tests for an order, both

ascending and descending. We find that the proportion of participants that claim the number 5 does not

significantly increase monotonically (p-values = 0.78,0.11,0.20), nor decrease monotonically (p-values =

0.22,0.89,0.79) as ∆W increases in each of the respective ∆α levels. Also, by aggregating the data (ignoring

the ∆α levels), both the ascending (p-value = 0.24) and descending (p-value 0.75) trends are not significant

in the Jonckheere–Terpstra test.

B.3.2. Non-parametric tests: The effect of routing probabilities. We run a Generalized Cochran-

Mantel-Haenszel test for the conditional association between the proportion of participants that reported the

number 5 and the ∆α condition, conditional on the levels of ∆W . We find that the conditional association is

significant (M2 = 12.16, df = 2, p-value = 0.002). We also run a Chi-square test for the marginal association

between the proportion of participants that reported the number 5 and the ∆α condition. We find that the

marginal association is significant (χ2 = 12.03, df = 2, p-value = 0.002). For each ∆W level (i.e., 3 min, 8 min,

13 min), we run Jonckheere–Terpstra tests for an order, both ascending and descending. We find that the

proportion of participants who claim the number 5 does not significantly decrease monotonically (p-values

= 0.61,0.99,0.97) as the ∆α increases in any of the respective ∆W levels. Moreover, while that proportion

does not significantly increase monotonically for the 2− 5 min level (p-value = 0.39), it does significantly

decrease monotonically in the higher wait-time conditions, i.e., 2− 10 min (p-value = 0.009) and 2− 15 min

(p-value = 0.03). Also, by aggregating the data (ignoring the ∆W levels), the proportion of participants that

claim 5 significantly increases monotonically as the ∆α increases (p-value 0.005).

B.3.3. Simulations. In our logistic regressions, we study the reporting behaviour of participants (i.e.,

whether they report a number 5) in order to derive conclusions about their misreporting behaviour. We

found a significant ∆α effect on the reporting behaviour. We concluded that this is attributed to changes

in the lying behaviour. Since we do not observe individual die outcomes in the experiment, the noise in the

realizations of the die rolls may lead to a wrong conclusion that ∆α has an effect on lying behaviour, when

in fact there is no effect, i.e., there may be a type 1 error with respect to the ∆α condition.

To understand the impact of the sampling variation of the die outcome on the type 1 error probability of

the ∆α condition, we conduct a simulation analysis, where for each of the j = 9 experimental conditions (with

sample size Nj), we simulate Nj independent Bernoulli(1/6) rolls. This captures the fact that participants
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get a number 5 with probability 1/6, and any other number with probability 5/6. Then, based on the actual

die outcome, we simulate participants reports in the following way: If the actual die outcome is 5 we simulate

a report equal to 5 with probability 1, and if the actual die outcome is not 5 we simulate a report equal to 5

with probability P(misreport), where we select different values of P(misreport) as a further robustness check.

Importantly, to investigate the type 1 error, we assume that the lying probability in our simulations does not

depend on the experimental conditions. We consider P(misreport) = 0, P(misreport) = 0.14, which is the

average lying rate in our data set (we use the method proposed in Hugh-Jones (2019) to estimate lying rates

in binary lying games, which estimates the excess number of 5s reports to what would be expected under full

honesty based on a bayesian approach), and P(misreport) = 0.35 (which is the maximum possible lying rate in

our data set, and assumes that no participant actually rolled a number 5). Finally, once a data set is generated

based on the aforementioned process, we fit a logistic regression with linear predictor β0 + β1∆W + β2∆α.

For a total of 10,000 simulation runs, we use the p-values associated with the coefficient β2 to compute the

proportion of runs where such a coefficient is significant at different levels (i.e., 0.01,0.05,0.01,0.001), that

is, where there is a type 1 error. The following table shows the results of our simulation analysis.

Table 6 Simulation Results: Type 1 error probability

Significance P(misreport)

level 0 0.14 0.35

0.1 0.1019 0.0973 0.0969

0.05 0.0501 0.0508 0.0508

0.01 0.0097 0.0094 0.0087

0.001 0.0006 0.0007 0.0017

Overall, based on our simulation results we corroborate that the probability of a type 1 error is very close

to the considered significance levels. Thus, we can confidently conclude that the observed differences in the

reporting behaviour can be attributed to differences in the lying behaviour, and not to sampling variation.

Finally, we want to mention that, in a related exercise, Fries et al. (2021) run a similar analysis in which

they compare the frequency of reported 5s with the expected probability of success of 16.66% using binomial

tests. They also corroborate that the type 1 error is close to the considered significance levels. Similarly, Fries

and Parra (2021) show that frequentist methods in the die roll game produce accurate confidence intervals

for the average die roll when the sample is about 100 observations or more.
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B.4. Structural Estimation

In this section, we conduct a structural estimation analysis with our experimental data to investigate the fit

and the predictive ability of different lying aversion distributions and lying cost specifications. In particular,

we consider an exponential lying aversion distribution with density φ(θ) = γe−γθ, a uniform distribution with

density φ(θ) = 1/θ̄, a half-normal distribution with density φ(θ) = 2σ
πα
e−

(θσ)2

πα , and a half-logistic distribution

with density φ(θ) = 2eθ/σl

σl(1+eθ/σl )2
. Moreover, based on our discussion in §5.1, we consider a fixed lying cost

that predicts a misreporting probability Φ((αH −αL)(W2−W1)) (see §5.2 where we describe how to derive

the misreporting probability function), a linear in material benefit lying cost that predicts a misreporting

probability Φ(1), and a quadratic in material benefit lying cost that predicts a misreporting probability

Φ(1/(αH−αL)(W2−W1)). Recall that Φ represents the cumulative distribution function of the lying aversion.

In particular, in this analysis we are interested in showing that a lying cost specification, as per our

proposed model in §6.4 and developed assumptions in §6.4.1, can achieve a better fit and out-of-sample

predictive ability in comparison to the aforementioned lying costs specifications. Based on §6.4 and §6.4.1

we propose τ(∆α) = (∆α)ϕ = (1−αL)ϕ where we recall that αH = 1 is fixed in all experimental conditions.

We let ϕ> 0, which corresponds to a misreporting probability Φ((1−αL)ϕ). We propose such specification

as it is flexible, i.e., it allows to capture linearity, concavity and convexity on αL through the parameter ϕ.

We let X = {yij , α
j
L,W

j
2} represent our experimental data set, where yij denotes the observed indicator

random variate for participant i (yij = 1 if participant i reports 5), in an experimental condition j with

upgrading probability αjL and waiting time in the long queue W j
2 . We recall that αH = 1 and W1 = 2 in

all experimental conditions. We assume that Y i
j are mutually independent across participants. We define

pj := P(Y i
j = 1) which depends on the actual die roll. Assuming that there is no down-reporting, we have that

P(Y i
j = 1|actual die outcome = 5) = 1 and P(Y i

j = 1|actual die outcome 6= 5) = Φ(f(α,W)) where f(α,W) is

some function that depends on the considered lying cost specification as described above.

We let β represent the relevant parameters to estimate. Given the experimental design, and under

the assumption that participants roll a fair die, we obtain that: pj(β) = P(Yi
j = 1) = 1

6
P(Y i

j =

1|actual die outcome = 5)+ 5
6
P(Y i

j = 1|actual die outcome 6= 5) = 1
6

+ 5
6
Φ(f(α,W)). Also, for our estimation,

we group binary individual responses at the experimental condition j ∈ {0, · · · ,9} level with sample size nj ,
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such that the number of participants who claim the number 5 is captured by a binomial random variate kj ,

and the log-likelihood is given by:

L(β|X) =
∑
j

log
((nj
kj

)
p
kj
j (β)(1− pj(β))nj−kj

)
. (14)

We estimate the relevant parameters that maximize L for all the aforementioned lying aversion distributions

and lying cost specifications. To study the out-of-sample predictive ability of such specifications, we carry

out the following procedure:

1. For a given lying aversion distribution and lying cost specification, we withhold a focal experimental

condition and estimate the relevant parameters on the remaining 8 conditions.

2. Based on such estimates, we compute the predicted probability P̂(Y = 1) for the focal condition and

calculate the absolute error with respect to the actual probability P(Y = 1).

3. Once we do this for all experimental conditions, we compute the Mean Absolute Error (MAE) across

the 9 focal conditions.

Table 7 summarizes the results of this analysis, and Tables 8 and 9 present further details. From Table 7,

based on the AIC values, we can see that the proposed specification for τ(∆α) as per our proposed model in

§6.4 achieves a better fit in comparison to the sensible lying costs specifications from the literature. We note

that this holds for all the considered lying aversion distributions. Indeed, we observe that the AIC values

of a given lying cost specification do not vary much across lying aversion distributions. Moreover, based

on the MAE values, we can see that our proposed specification provides the best out-of-sample predictive

ability. We note that this holds for all the considered lying aversion distributions. Indeed, we observe that the

MAE values of a given lying cost specification do not vary much across lying aversion distributions. Finally,

we observe that the linear in material benefit lying cost presents the closest performance to our proposed

specification. This is intuitive since our proposed specification, as described in §6.4, is based on a lying cost

model that is proportional to the material benefit. The observed improvement of our proposed model in

terms of AIC and MAE comes from the fact that it not only captures the insensitivity to the difference in

waiting times (as the linear in material benefit model), but it also captures the sensitivity to changes in

routing probabilities from the specification of τ(∆α).
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Table 7 Summary results: structural estimation and out-of-sample prediction ability

Lying Cost

Specification

Θ∼Exp(γ) Θ∼Unif(0, θ̄)

Parameter estimate†

AIC MAE
Parameter estimate†

AIC MAE
γ ϕ θ̄ ϕ

Fixed 0.03*** (0.003) - 84.88 0.06 43.04*** (4.063) - 89.03 0.06

Linear 0.14*** (0.014) - 71.93 0.04 7.41*** (0.658) - 71.93 0.04

Quadratic 0.07*** (0.013) - 180.48 0.11 15.73*** (2.514) - 183.01 0.11

Proposed 0.2*** (0.023) 0.34* (0.124) 64.19 0.03 5.61*** (0.613) 0.32* (0.117) 64.12 0.03

Lying Cost

Specification

Θ∼HalfNormal(σ) Θ∼HalfLogis(σl)

Parameter estimate†

AIC MAE
Parameter estimate†

AIC MAE
σ ϕ σl ϕ

Fixed 33.5*** (3.272) - 88.25 0.06 20.82*** (2.047) - 88.04 0.06

Linear 5.89*** (0.528) - 71.93 0.04 3.68*** (0.331) - 71.93 0.04

Quadratic 12.31*** (2.01) - 182.74 0.11 7.67*** (1.257) - 182.66 0.11

Proposed 4.44*** (0.493) 0.33* (0.118) 64.14 0.03 2.78*** (0.309) 0.33* (0.118) 64.14 0.03

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

† Values shown are the Maximum Likelihood Estimate with associated (standard error).

MAEs are rounded to two decimal places. For a given lying cost specification and lying aversion distribution, MAEs are computed by averaging

the corresponding absolute errors across focal experimental conditions from Tables 8 and 9.

AIC = 2b− 2L(β̂), where b is the number of estimated parameters. For a given lying cost specification and lying aversion distribution, AICs are

computed from the estimation of the relevant parameters considering all 9 experimental conditions.
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Table 8 Structural estimation and out-of-sample prediction ability (Exponential and Uniform distributions)

Focal

Experimental

Condition†

Observed

P(Y = 1)

Lying Cost

Specification

Θ∼Exp(γ) Θ∼Unif(0, θ̄)

Parameter estimate†

AIC
Predicted

P̂(Y = 1)

Absolute

Error

Parameter estimate†

AIC
Predicted

P̂(Y = 1)

Absolute

Errorγ ϕ θ̄ ϕ

1 0.29

Fixed 0.03*** (0.003) - 74.62 0.23 0.06 45.18*** (4.547) - 77.59 0.22 0.07

Linear 0.14*** (0.015) - 66.04 0.28 0.01 7.52*** (0.718) - 66.04 0.28 0.01

Quadratic 0.07*** (0.013) - 159.97 0.19 0.11 16.97*** (2.91) - 161.69 0.18 0.11

Proposed 0.21*** (0.028) 0.38* (0.135) 57.76 0.32 0.03 5.29*** (0.655) 0.36* (0.128) 57.65 0.32 0.03

2 0.35

Fixed 0.03*** (0.003) - 78.35 0.32 0.03 45.75*** (5.175) - 81.88 0.31 0.04

Linear 0.13*** (0.014) - 59.47 0.27 0.08 8.08*** (0.819) - 59.47 0.27 0.08

Quadratic 0.07*** (0.013) - 133.82 0.17 0.18 16.5*** (2.748) - 135.78 0.17 0.18

Proposed 0.17*** (0.026) 0.28* (0.13) 56.28 0.30 0.05 6.2*** (0.844) 0.26* (0.123) 56.25 0.30 0.05

3 0.34

Fixed 0.04*** (0.004) - 69.37 0.47 0.14 32.23*** (3.366) - 71.15 0.50 0.17

Linear 0.14*** (0.014) - 62.37 0.27 0.06 7.9*** (0.784) - 62.37 0.27 0.06

Quadratic 0.07*** (0.013) - 140.24 0.17 0.16 16.16*** (2.644) - 142.43 0.17 0.17

Proposed 0.18*** (0.027) 0.31* (0.131) 57.84 0.31 0.03 5.91*** (0.779) 0.29* (0.124) 57.80 0.31 0.03

4 0.22

Fixed 0.03*** (0.003) - 78.81 0.20 0.02 43.45*** (4.157) - 82.68 0.20 0.02

Linear 0.16*** (0.015) - 62.05 0.29 0.07 6.97*** (0.621) - 62.05 0.29 0.07

Quadratic 0.07*** (0.013) - 174.73 0.21 0.01 16.12*** (2.693) - 177.03 0.20 0.02

Proposed 0.21*** (0.025) 0.33* (0.112) 53.25 0.29 0.07 5.28*** (0.556) 0.31* (0.105) 53.24 0.29 0.07

5 0.29

Fixed 0.03*** (0.003) - 77.76 0.25 0.04 44.77*** (4.535) - 81.08 0.24 0.04

Linear 0.14*** (0.015) - 66.19 0.28 0.01 7.47*** (0.709) - 66.19 0.28 0.01

Quadratic 0.07*** (0.013) - 159.95 0.18 0.10 16.64*** (2.798) - 161.84 0.18 0.11

Proposed 0.2*** (0.024) 0.34* (0.124) 58.51 0.29 0.00 5.61*** (0.633) 0.32* (0.118) 58.44 0.29 0.00

6 0.29

Fixed 0.03*** (0.003) - 78.97 0.31 0.02 42.79*** (4.359) - 83.35 0.29 0.00

Linear 0.14*** (0.015) - 66.17 0.28 0.01 7.49*** (0.711) - 66.17 0.28 0.01

Quadratic 0.07*** (0.013) - 157.94 0.18 0.11 16.32*** (2.694) - 160.02 0.17 0.11

Proposed 0.2*** (0.024) 0.34* (0.125) 58.53 0.29 0.00 5.62*** (0.635) 0.32* (0.118) 58.45 0.29 0.00

7 0.28

Fixed 0.03*** (0.003) - 64.70 0.17 0.10 43.41*** (4.127) - 68.53 0.17 0.10

Linear 0.14*** (0.015) - 66.30 0.28 0.00 7.4*** (0.694) - 66.30 0.28 0.00

Quadratic 0.16*** (0.026) - 158.11 0.50 0.23 7.3*** (1.152) - 160.46 0.55 0.27

Proposed 0.2*** (0.024) 0.48* (0.168) 55.87 0.22 0.06 5.44*** (0.599) 0.45* (0.159) 55.79 0.22 0.06

8 0.23

Fixed 0.03*** (0.003) - 76.63 0.18 0.04 43.48*** (4.147) - 80.44 0.18 0.04

Linear 0.15*** (0.015) - 62.76 0.29 0.06 7*** (0.627) - 62.76 0.29 0.06

Quadratic 0.08*** (0.015) - 174.64 0.24 0.02 15.51*** (2.65) - 177.41 0.24 0.01

Proposed 0.19*** (0.024) 0.31* (0.141) 58.46 0.24 0.01 5.65*** (0.628) 0.29* (0.133) 58.39 0.24 0.01

9 0.24

Fixed 0.03*** (0.003) - 77.08 0.20 0.04 43.69*** (4.196) - 80.75 0.19 0.04

Linear 0.15*** (0.015) - 63.72 0.28 0.05 7.05*** (0.637) - 63.72 0.28 0.05

Quadratic 0.07*** (0.013) - 174.19 0.21 0.02 16.45*** (2.823) - 176.31 0.21 0.03

Proposed 0.2*** (0.024) 0.34* (0.145) 58.60 0.24 0.00 5.62*** (0.623) 0.32* (0.137) 58.53 0.24 0.00

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Presented predicted probabilities, observed probabilities and absolute errors are rounded to two decimal places.

AIC = 2b− 2L(β̂), where b is the number of estimated parameters.

† Values shown are the Maximum Likelihood Estimate with associated (standard error).

†In each row we withhold a focal experimental condition and estimate the relevant parameters on the remaining conditions. Based on such estimates, we compute the predicted probability P̂(Y = 1) for the focal

condition and calculate the absolute error with respect to the actual probability P(Y = 1).
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Table 9 Structural estimation and out-of-sample prediction ability (Half-Normal and Half-Logistic distributions)

Focal

Experimental

Condition†

Observed

P(Y = 1)

Lying Cost

Specification

Θ∼HalfNormal(σ) Θ∼HalfLogis(σl)

Parameter estimate†

AIC
Predicted

P̂(Y = 1)

Absolute

Error

Parameter estimate†

AIC
Predicted

P̂(Y = 1)

Absolute

Errorσ ϕ σl ϕ

1 0.29

Fixed 35.2*** (3.646) - 77.04 0.22 0.07 21.9*** (2.283) - 76.90 0.22 0.07

Linear 5.97*** (0.575) - 66.04 0.28 0.01 3.74*** (0.361) - 66.04 0.28 0.01

Quadratic 13.34*** (2.329) - 161.51 0.18 0.11 8.32*** (1.46) - 161.47 0.18 0.11

Proposed 4.19*** (0.526) 0.36* (0.129) 57.68 0.32 0.03 2.62*** (0.331) 0.37* (0.129) 57.68 0.32 0.03

2 0.35

Fixed 35.6*** (4.168) - 81.29 0.31 0.04 22.12*** (2.607) - 81.13 0.32 0.04

Linear 6.42*** (0.656) - 59.47 0.27 0.08 4.02*** (0.411) - 59.47 0.27 0.08

Quadratic 12.95*** (2.196) - 135.57 0.17 0.18 8.08*** (1.377) - 135.51 0.17 0.18

Proposed 4.91*** (0.677) 0.26* (0.123) 56.26 0.30 0.05 3.07*** (0.425) 0.26* (0.124) 56.26 0.30 0.05

3 0.34

Fixed 25.35*** (2.713) - 70.90 0.49 0.16 15.81*** (1.701) - 70.83 0.49 0.15

Linear 6.28*** (0.628) - 62.37 0.27 0.06 3.93*** (0.394) - 62.37 0.27 0.06

Quadratic 12.66*** (2.111) - 142.20 0.17 0.17 7.89*** (1.322) - 142.13 0.17 0.17

Proposed 4.68*** (0.625) 0.29* (0.124) 57.81 0.31 0.03 2.93*** (0.392) 0.29* (0.125) 57.81 0.31 0.03

4 0.22

Fixed 33.8*** (3.34) - 81.95 0.20 0.02 21.05*** (2.1) - 81.76 0.20 0.02

Linear 5.53*** (0.498) - 62.05 0.29 0.07 3.46*** (0.313) - 62.05 0.29 0.07

Quadratic 12.62*** (2.151) - 176.79 0.20 0.02 7.87*** (1.349) - 176.73 0.20 0.02

Proposed 4.17*** (0.448) 0.31* (0.106) 53.24 0.29 0.07 2.61*** (0.281) 0.31* (0.106) 53.24 0.29 0.07

5 0.29

Fixed 34.85*** (3.642) - 80.48 0.24 0.04 21.7*** (2.288) - 80.32 0.24 0.04

Linear 5.94*** (0.569) - 66.19 0.28 0.01 3.71*** (0.357) - 66.19 0.28 0.01

Quadratic 13.07*** (2.242) - 161.64 0.18 0.11 8.16*** (1.405) - 161.58 0.18 0.11

Proposed 4.44*** (0.509) 0.33* (0.119) 58.46 0.29 0.00 2.78*** (0.32) 0.33* (0.119) 58.47 0.29 0.00

6 0.29

Fixed 33.1*** (3.493) - 82.54 0.30 0.01 20.6*** (2.2) - 82.32 0.30 0.01

Linear 5.95*** (0.57) - 66.17 0.28 0.01 3.72*** (0.358) - 66.17 0.28 0.01

Quadratic 12.8*** (2.154) - 159.79 0.17 0.11 7.99*** (1.352) - 159.73 0.17 0.11

Proposed 4.45*** (0.511) 0.33* (0.119) 58.47 0.29 0.00 2.79*** (0.321) 0.33* (0.119) 58.47 0.29 0.00

7 0.28

Fixed 33.8*** (3.322) - 67.80 0.17 0.10 21.02*** (2.081) - 67.61 0.17 0.10

Linear 5.88*** (0.557) - 66.30 0.28 0.00 3.68*** (0.35) - 66.30 0.28 0.00

Quadratic 5.75*** (0.918) - 160.25 0.53 0.25 3.59*** (0.575) - 160.19 0.53 0.25

Proposed 4.31*** (0.481) 0.45* (0.16) 55.81 0.22 0.06 2.69*** (0.302) 0.45* (0.161) 55.82 0.22 0.06

8 0.23

Fixed 33.8*** (3.323) - 79.71 0.18 0.04 21.08*** (2.095) - 79.52 0.18 0.04

Linear 5.55*** (0.503) - 62.76 0.29 0.06 3.47*** (0.316) - 62.76 0.29 0.06

Quadratic 12.1*** (2.121) - 177.11 0.24 0.01 7.53*** (1.325) - 177.03 0.24 0.01

Proposed 4.47*** (0.504) 0.3* (0.134) 58.41 0.24 0.01 2.8*** (0.317) 0.3* (0.134) 58.41 0.24 0.01

9 0.24

Fixed 34*** (3.369) - 80.05 0.19 0.04 21.18*** (2.117) - 79.87 0.19 0.04

Linear 5.6*** (0.512) - 63.72 0.28 0.05 3.5*** (0.321) - 63.72 0.28 0.05

Quadratic 12.88*** (2.253) - 176.09 0.21 0.03 8.03*** (1.414) - 176.03 0.21 0.03

Proposed 4.45*** (0.501) 0.32* (0.138) 58.55 0.24 0.00 2.78*** (0.314) 0.32* (0.138) 58.55 0.24 0.00

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Presented predicted probabilities, observed probabilities and absolute errors are rounded to two decimal places.

AIC = 2b− 2L(β̂), where b is the number of estimated parameters.

† Values shown are the Maximum Likelihood Estimate with associated (standard error).

†In each row we withhold a focal experimental condition and estimate the relevant parameters on the remaining conditions. Based on such estimates, we compute the predicted probability P̂(Y = 1) for the focal

condition and calculate the absolute error with respect to the actual probability P(Y = 1).
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Appendix C: Additional Experimental Investigation

For this investigation, we use the same experimental procedure, and criteria for the recruitment of participants

and exclusions, as in Section §6, so we do not repeat these here. Based on the results in our main experimental

investigation, in here we are interested in understanding the relative effect of αH and αL on the misreporting

probability (8). Formally, we set the following null hypotheses:

H1.b. Changing the routing probability αH does not have an effect on the proportion of participants that

misreport.

H2.b. Changing the routing probability αL does not have an effect on the proportion of participants that

misreport.

Based on the above, in order to test these hypotheses, participants were randomly assigned to one of

nine experimental conditions (see Table 10) which differ in both the routing probabilities, αH and αL, while

keeping the waiting times in the queues constant.

Table 10 Experimental conditions.

Condition αH αL W1 W2 Sample

1 1 0 2 min 15 min 141

2 1 0.2 2 min 15 min 140

3 1 0.4 2 min 15 min 141

4 0.8 0 2 min 15 min 138

5 0.8 0.2 2 min 15 min 141

6 0.8 0.4 2 min 15 min 133

7 0.6 0 2 min 15 min 138

8 0.6 0.2 2 min 15 min 140

9 0.6 0.4 2 min 15 min 130

We set the target sample size for the experiment and our analysis plans a priori. We pre-registered our

experiment, and the corresponding As Predicted document can be found at: https://aspredicted.org/

2DV_J7D. A total of 1,633 participants (41.58% female, mean age Mage = 34.25, standard deviation SDage =

11.70) were recruited. In our experiment, we have a completion rate of 87%. From those who completed the

experiment, 87% of participants took, on average, less than 30 seconds to click the advance in queue buttons,

https://aspredicted.org/2DV_J7D
https://aspredicted.org/2DV_J7D
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and the mean and median average click time was 17 seconds and 11 seconds, respectively. After exclusions,

we are left with a sample of 1,242 participants (43.96% female, mean age Mage = 34.78, standard deviation

SDage = 10.89).

C.1. Experimental Results

In Figure 2, we present the proportion of participants who reported the number 5 across experimental

conditions. In Table 11, we present corresponding proportions. Participants have the incentive to report

the number 5 to reduce their waiting time in the queue. We run exact binomial tests for the proportions

of participants who reported the number 5 in each condition compared to the proportion that would have

reported the number 5 under full honesty i.e., 1/6, (p-values for conditions 1 to 9 = (0.49, 0.01, 0.24, 0.07,

0.06, 0.15, 0.01, 0.12, 0.32)). We can see that, in some conditions, participants might have been fully honest.

Importantly, we emphasize that the observed level of honesty in this additional experiment provides further

support for the existence of lying costs, and replicates the result in the main experiment that not everyone

misreports (i.e., provides support to H1), which underpins our model and derived scheduling policy results.

Table 11 Proportions and half widths of 95% confidence intervals of participants who reported the die roll 5

across experimental conditions.

Condition P(Claim 5)

1 0.17± 0.06

2 0.24± 0.07

3 0.19± 0.06

4 0.22± 0.07

5 0.22± 0.07

6 0.20± 0.07

7 0.24± 0.07

8 0.21± 0.07

9 0.18± 0.07

We run logistic regressions where we control for age and gender. We estimate the treatments effects on

the probability to claim the number 5 (see Table 12). We observe that none of the treatment coefficients

are significant. We can see that the coefficient for ∆α is positive, which is consistent with the results in our
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Figure 2 Proportions of participants that reported the number 5 across experimental conditions.
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main experimental investigation, however, it is not significant. In light of the significant results in our main

experimental investigation, we attribute this to the heterogeneity in the lying proportion between subject

populations (see discussion about subject heterogeneity in the literature below). We argue that the lack of

significance in this study arises from the fact that, overall, participants were very honest in this experiment,

such that there is little room for any managerial intervention to further reduce dishonesty (leading to a

not statistically significant effect). In the main experiment, dishonesty is sufficiently high for the scheduling

policy to affect the misreporting behaviour, while in the additional experiment, almost everyone is already

honest. Indeed, we note that the sample size in this additional experiment is large (1242 participants). Thus,

we are quite confident that this subject population is indeed very honest. Importantly, we would like to

highlight that our model is general enough to derive prescriptions contingent on how much a given population

responds to changes in the routing probabilities. Indeed, Proposition 1 indicates that for a population such

as the one observed in this experiment, it would be optimal to implement an honor policy.

Heterogeneity between subject populations in the literature. The observed heterogeneity in the lying

proportions between the two experiments is an important point that is commonly recognized and discussed.

Indeed, in the lying literature, it has been acknowledged that large differences in the percentages of liars
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Table 12 Logistic Regressions

P(Claim 5)

(1a) (2a) (3a) (4a) (5a)

(Intercept) -1.25 ** -1.31 *** -1.20 ** -0.77 -1.39 ***

(0.42) (0.26) (0.43) (0.58) (0.31)

Age 0.00 0.00 0.00 0.00 0.00

(0.01) (0.01) (0.01) (0.01) (0.01)

GenderM 0.00 0.00 0.00 0.01 0.00

(0.14) (0.14) (0.14) (0.14) (0.14)

αH -0.14 - -0.14 -0.70 -

(0.43) - (0.43) (0.67) -

αL - -0.23 -0.23 -2.53 -

- (0.43) (0.43) (2.15) -

αH ∗αL - - - 2.86 -

- - - (2.63) -

∆α - - - - 0.04

- - - - (0.30)

N 1242 1242 1242 1242 1242

AIC 1279.70 1279.52 1281.41 1282.23 1279.79

Pseudo R2 0.00 0.00 0.00 0.00 0.00

Pseudo R2 † 0.01 0.01 0.01 0.05 0.00

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

†We compute McFadden’s pseudo R2 at the aggregate experimen-

tal condition level. Binary individual responses are grouped at the

experimental condition j ∈ {0, · · · ,9} level with sample size nj , such

that the number of participants that claim the number 5 is cap-

tured by a binomial random variable kj , and the log likelihood is

given by
∑

j
log
((
nj
kj

)
p
kj
j (1− pj)nj−kj

)
.

across studies are commonly observed (Janezic 2020). To illustrate this, Table 13 presents the lying prevalence

observed in some of the studies that use the Fischbacher and Föllmi-Heusi (2013) experimental design with

two different claim-dependent payoffs - this is the same as in our experimental design where participants are



Rodriguez, Ibrahim, and Zhan: On Customer (Dis)honesty in Unobservable Queues
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 63

placed in the short queue if they claim to have obtained the number 5, and are placed in the long queue if

they report any other number.

Table 13 Lying prevalence observed in some studies

Study Country Randomization method Subjects % Liars

Houser et al. (2012) USA Coin toss 502 45% - 53%

Hilbig and Hessler (2013) Germany Die roll 765 19.3%

Abeler et al. (2014) Germany Coin toss 658 ∼ 0%

Barfort et al. (2015) Denmark Die roll 862 42.2%

Djawadi and Fahr (2015) Germany Draw from urn 252 32.4%

Pascual-Ezama et al. (2015) Multiple Coin toss 1440 14%

Hilbig and Zettler (2015) Germany Die roll 88 35%

Zettler et al. (2015) Germany Coin toss 134 17.3%

Dieckmann et al. (2016) Multiple Coin toss 1015 32%

Kajackaite and Gneezy (2017) USA Die roll 1200 7.6% - 19.6%

Our main study Multiple Die roll 2021 6.4% - 22%

Our additional study Mainly USA Die roll 1242 ∼0% - 8.8%

Let b be the probability of obtaining the high payoff outcome. Let p be the observed proportion

of participants that claim to have obtained the high payoff outcome. Let γ be the proportion

of participants that obtained the low payoff outcome but lied and claimed to have obtained

the high payoff outcome. We compute the % Liars = γ by solving p= b+ γ(1− b). Note that

this assumes no down reporting.

We note that most sample sizes in Table 13 are large, so we can confidently rule out the sampling variation

of the randomized methods as an explanation for the marked differences in the percentage of liars. This

heterogeneity in lying tendencies across papers has been a puzzle in the literature, and recently it has been

discussed that such differences point to high heterogeneity in lying preferences between subject pools rather

than heterogeneity of potential confounds, e.g., demographics and related macro-level indicators (Janezic

2020). Indeed, demographics such as age, gender, or country have been found to have only limited predictive

power for lying behaviour (Fischbacher and Föllmi-Heusi 2013, Abeler et al. 2014, 2019, Janezic 2020). For

example, while some studies have found that levels of honesty vary significantly across countries (Hugh-Jones
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2016, Dieckmann et al. 2016), others show no significant difference and also show no meaningful relationship

between dishonesty levels and related macro-level indicators including cultural values (Mann et al. 2016),

social preferences (Janezic 2020), or common indices of corruption and transparency (Pascual-Ezama et al.

2015). Taking the literature in aggregate, Abeler et al. (2019)’s meta-analysis shows that indeed the country

covariate has little predictive power for lying behaviour. In particular, the meta-analysis shows that the

average lying report does not vary much between countries, but high variation within countries is observed.

In line with this, we note that in our main experiment, we do not find a significant relation between

country and the propensity to lie (see Table 14). Moreover, consistent with the aforementioned variability

within countries, for USA participants, we see in the main experiment an overall lying prevalence (i.e.,

across conditions) of 15% while in the additional experiment, we see an overall lying prevalence of 5.2%.

Moreover, for the case of condition 3 in the main experiment and condition 1 in the additional experiment

(these conditions have the same parameter settings) we see a lying prevalence of USA participants of 18.4%

and 1%, respectively. We note that both USA samples are of similar size: In the main experiment, 69% of

participants (i.e., 1386 subjects) come from the USA, while in the additional experiment, 98% of participants

(i.e., 1218 subjects) come from the USA. These results strongly point to heterogeneity in lying tendencies

across subject populations.
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Table 14 Logistic Regressions with Country Covariate

P(Claim 5)

(1a) (2a) (3a) (4a)

(Intercept) -0.93*** -1.07*** -1.17*** -1.00***

(0.22) (0.21) (0.24) (0.28)

Age 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)

GenderM 0.15 0.14 0.14 0.15

(0.10) (0.10) (0.10) (0.10)

Country:India -0.01 0.02 0.02 0.02

(0.14) (0.14) (0.14) (0.14)

Country:Brazil -0.31 -0.30 -0.31 -0.32

(0.26) (0.26) (0.26) (0.26)

Country:United Kingdom -0.26 -0.23 -0.23 -0.23

(0.33) (0.33) (0.33) (0.33)

Country:Italy -0.05 -0.06 -0.07 -0.08

(0.33) (0.33) (0.33) (0.33)

Country:Canada -0.68 -0.62 -0.65 -0.64

(0.46) (0.46) (0.46) (0.46)

· · ·

∆W 0.01 - 0.01 -0.01

(0.01) - (0.01) (0.02)

∆α - 0.40** 0.41** 0.09

- (0.14) (0.14) (0.30)

∆α ∗∆W - - - 0.04

- - - (0.03)

N 2021 2021 2021 2021

AIC 2441.36 2433.59 2434.56 2435.15

Pseudo R2 0.00 0.01 0.01 0.01

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Note: United States serves as a reference factor in the regression. Due

to space constraints, we do not present all the countries in the table.

The presented countries correspond to more than 95% of the subjects

in the experiment. Other countries include Germany, Spain, France,

among others.
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Appendix D: General Conditions for the Optimal Scheduling Policy

We consider the case in which αH > αL, such that L type customers are those that have the incentive to

misreport. Based on this, to derive general conditions for the identified optimal scheduling policy, we assume

that H type customers never down-report, which is intuitive, and that L type customers best respond by

misreporting with some probability that does not depend on waiting times. This is consistent with our

experimental results and with the extant literature that finds that misreporting behaviour is insensitive to

material incentives (Abeler et al. 2019). The insensitivity to waiting times implies that customers’ misre-

porting equilibrium is a function that depends only on the routing probabilities, η(αH , αL). To see this, note

that, generally speaking, the misreporting equilibrium probability (call it ν) is given by the solution of the

fixed-point problem ν = η(αH , αL,W1(ν),W2(ν)) (where waiting times and misreporting are consistent and

endogenously determined and η denotes the best-response function). However, since we have that η(αH , αL),

it simply follows that ν = η(αH , αL). This is intuitive since customers individual best responses do not care for

the waiting times. Since customers affect each other only through the resulting waiting times, all individual

best responses represent a best response correspondence, forming a customer equilibrium where a proportion

equal to η(αH , αL) misreports. Based on this, the task at hand is to determine under which assumptions

regarding η(αH , αL), an honor policy or an upgrading policy will be optimal. Here, we present a general set

of sufficient conditions.

Proposition 2. Assume that αH >αL, that H type customers never down-report, that L type customers

misreport with probability η(αH , αL), and that η(αH , αL) is differentiable at all αH >αL. If − ∂
∂αL

η(αH , αL)≥

∂
∂αH

η(αH , αL) for all αH ≥ αL, then it follows that the optimal scheduling policy will be either (α∗H = 1, α∗L = 0)

or (α∗H = 1, α∗L ∈ (0,1)). That is an honor policy or an upgrading policy.

Proposition 2, shows that if the marginal effect of upgrading to mitigate misreporting is greater than or

equal to the marginal effect of downgrading (for all αH >αL), then the same optimal scheduling policy (i.e.,

honor policy or upgrading policy) holds. For example, consider the customer problem (2). In this case, since

αH >αL, we know that H type customers do not down-report. Now, assume that L type customers experience

a lying cost captured by cL(W2−W1), that is by the difference between expected waiting times in priority

queues (rather than in priority classes as in the main paper). In this case, we have that η = Φ(αH − αL).

We can see that the conditions of the above proposition are satisfied: − ∂
∂αL

η(αH , αL) = φ(αH − αL) ≥
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φ(αH − αL) = ∂
∂αH

η(αH , αL). For another example, assume that L type customers experience a lying cost

captured by cL(W2−WH), that is by the difference between the deserved waiting cost and the expected one

from misreporting. In this case we have that η = Φ(αH−αL
αH

). We can see that the conditions of the above

proposition are satisfied: − ∂
∂αL

η(αH , αL) = φ(αH−αL
αH

) 1
αH
≥ φ(αH−αL

αH
) αL
α2
H

= ∂
∂αH

η(αH , αL). Finally, consider

a different formalization of the customer problem, based on a discrete choice framework. In this case, the

misreporting choice probability can be modelled by P(ε < β0 + β1∆α+ β2∆W ), where ε is a random term,

and β0 +β1∆α+β2∆W is a linear predictor that captures differences across choice alternatives (Train 2009).

If we let ε be logistically distributed, we obtain a logit choice model. Notice that our logistic regressions in

Table 3 suggest that the misreporting choice probability can be well captured by P(ε < β0 + β1∆α), such

that the misreporting probability is equal to Ψ(β0 +β1∆α), where Ψ is the CDF of the logistic distribution.

Based on this, we can see that the conditions of the above proposition are satisfied: − ∂
∂αL

η(αH , αL) =

ψ(β0 +β1∆α)β1 ≥ψ(β0 +β1∆α)β1 = ∂
∂αH

η(αH , αL), where ψ is the logistic density function. Based on this,

and assuming that H types never down-report. In all of the above examples, from the above Proposition 2

and Lemma 1, it is straightforward to see which of the two policies is the optimal one: an honor policy is

optimal if δL(1,0)≤ δL(1, α∗L) for α∗L ∈ (0,1), otherwise an upgrading policy is optimal. This can be easily

solved by numerically identifying the α∗L ∈ arg min δL(1, αL) = η(1, αL) +αL(1− η(1, αL)). We could impose

further assumptions on the structure of η to derive further conditions under which each policy is optimal.

However, this preserves the generality of our results (and obtaining the optimal policy requires simply to

numerically compute δL as a function of αL). We now present the proof of the above Proposition 2.

Proof. In this proof, for any function q(·), we use q′z(·) to denote the first partial derivative of q(·) with

respect to z. Consider the case in which customers misreport with probability η(αH , αL), where αH ≥ αL.

Based on the above, the Manager anticipates the following prioritization error probabilities:

δH(αH , αL) = 1−αH ,

δL(αH , αL) = αL + (αH −αL)η(αH , αL).

The Manager defines the routing probabilities αH , αL ∈ [0,1] in order to minimize the expected waiting

cost C in the system which can be written as:

C = c · f(αH , αL),
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where

c=

(
ρ2

1− ρ

)
> 0,

f(αH , αL) =
pHcH(1− ρ(1− δH(αH , αL))) + pLcL(1− ρδL(αH , αL))

pH(1− ρ(1− δH(αH , αL))) + pL(1− ρδL(αH , αL))
,

f ′αH =
d(αH , αL)γ(αH , αL)

g(αH , αL)
,

f ′αL =
d(αH , αL)(1− ραH)κ(αH , αL)

g(αH , αL)
,

d(αH , αL) = pHpLρ(cH − cL)> 0,

g(αH , αL) = (pH(1− ρ(1− δH(αH , αL))) + pL(1− ρδL(αH , αL)))2 > 0,

γ(αH , αL) =−(1− ραL)(1− η(αH , αL)) + (1− ραH)(αH −αL)η′αH (αH , αL),

κ(αH , αL) = (1− η(αH , αL)) + (αH −αL)η′αL(αH , αL),

We want to solve the problem: Min c · f(αH , αL), subject to the constraints: αL ≥ 0 ⇐⇒ −αL ≤ 0;αL ≤

αH ⇐⇒ αL−αH ≤ 0; and αH ≤ 1 ⇐⇒ αH − 1≤ 0. For this, we construct the lagrangian: L= cf(αH , αL)−

µ1(αL) +µ2(αL−αH) +µ3(αH − 1), and derive the KKT conditions:

Stationarity: L′αH = cf ′α∗
H
−µ2 +µ3 = 0; L′αL = cf ′α∗

L
−µ1 +µ2 = 0.

Complementary Slackness: µ1(−α∗L) = 0; µ2(α∗L−α∗H) = 0; µ3(α∗H − 1) = 0.

Dual Feasibility: µ1, µ2, µ3 ≥ 0.

Primal Feasibility: α∗L ≥ 0; α∗L ≤ α∗H ; α∗H ≤ 1.

Potential Candidate 1: (α∗H = 1, α∗L = 0).

Complementary Slackness: µ1 6= 0⇒ α∗L = 0; µ2 = 0; µ3 6= 0⇒ α∗H = 1.

Stationarity: µ3 = −cf ′α∗
H

= − cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= − cd(1,0)γ(1,0)

g(1,0)
; µ1 = cf ′α∗

L
=

cd(α∗H ,α
∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=

cd(1,0)(1−ρ)κ(1,0)

g(1,0)
.

Dual Feasibility: µ3 ≥ 0 ⇐⇒ cd(1,0)γ(1,0)

g(1,0)
≤ 0 ⇐⇒ γ(1,0)≤ 0 ⇐⇒ η′αH (1,0)≤ (1− η(1,0))/(1− ρ); µ1 ≥

0 ⇐⇒ cd(1,0)(1−ρ)κ(1,0)

g(1,0)
≥ 0 ⇐⇒ κ(1,0)≥ 0 ⇐⇒ −η′αL(1,0)≤ (1− η(1,0)).

Primal Feasibility: α∗L ≥ 0; α∗L ≤ α∗H ; α∗H ≤ 1.

Notice that as long as −η′αL(1,0) ≥ (1 − ρ)η′αH (1,0), this solution is a possible candidate whenever

−η′αL(1,0)≤ (1− η(1,0)).
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Potential Candidate 2: (α∗H = 1, α∗L ∈ (0,1)).

Complementary Slackness: µ1 = 0; µ2 = 0; µ3 6= 0⇒ α∗H = 1.

Stationarity: cf ′α∗
L

= 0 ⇐⇒ cd(α∗H ,α
∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=

cd(1,α∗L)(1−ρ)κ(1,α∗L)

g(1,α∗
L

)
= 0 ⇐⇒ κ(1, α∗L) = 0 ⇐⇒

−η′αL(1, α∗L)) =
(1−η(1,α∗L))

1−α∗
L

; µ3 =−cf ′α∗
H

=− cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(1,α∗L)γ(1,α∗L)

g(1,α∗
L

)
.

Dual Feasibility: µ3 ≥ 0 ⇐⇒ cd(1,α∗L)γ(1,α∗L)

g(1,α∗
L

)
≤ 0 ⇐⇒ γ(1, α∗L)≤ 0 ⇐⇒ −η′αL(1, α∗L)≥ (1−ρ)η′αH (1,α∗L)

1−ρα∗
L

.

Notice that 1−ρ
1−ρα∗

L
< 1.

Primal Feasibility: α∗L ≥ 0 ⇐⇒ −η′αL(1,0)> 1− η(1,0); α∗L ≤ α∗H ; α∗H ≤ 1. We define the function v(αL) =

−η′αL(1, αL)(1− αL)− (1− η(1, αL)). We can see that v(0)> 0 whenever −η′αL(1,0)> 1− η(1,0), and that

v(1) < 0. Since v(αL) is continuous in αL ∈ (0,1) it follows that there is at least one α∗L ∈ (0,1) such that

v(α∗L) = 0. It follows that whenever −η′αL(1,0)> 1−η(1,0), upgrading is a candidate. We note that depending

on the structure of η, it is still possible that upgrading is a candidate whenever −η′αL(1,0)≤ 1− η(1,0). We

could easily impose further assumptions to avoid this case and to guarantee the uniqueness of α∗L, however,

to preserve generality in our results we decide not to do so.

Potential Candidate 3: (α∗H ∈ (α∗L,1), α∗L = 0).

Complementary Slackness: µ1 6= 0⇒ α∗L = 0; µ2 = 0; µ3 = 0.

Stationarity: cf ′α∗
H

= 0 ⇐⇒ cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ cd(α∗H ,0)γ(α∗H ,0)

g(α∗
H
,0)

= 0 ⇐⇒ γ(α∗H ,0) = 0 ⇐⇒

η′αH (α∗H ,0) =
1−η(α∗H ,0)

(1−ρα∗
H

)α∗
H

; µ1 = cf ′α∗
L

=
cd(α∗H ,α

∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=

cd(α∗H ,0)(1−ρα∗H)κ(α∗H ,0)

g(α∗
H
,0)

.

Dual Feasibility: µ1 ≥ 0 ⇐⇒ cd(α∗H ,0)(1−ρα∗H)κ(α∗H ,0)

g(α∗
H
,0)

≥ 0 ⇐⇒ κ(α∗H ,0) ≥ 0 ⇐⇒ −η′αL(α∗H ,0) ≤ (1 −

ρα∗H)η′αH (α∗H ,0).

Notice that as long as −η′αL(α∗H ,0)≥ η′αH (α∗H ,0), this does not hold.

Potential Candidate 4: (α∗H ∈ (α∗L,1), α∗L ∈ (0, α∗H)).

Complementary Slackness: µ1 = 0; µ2 = 0; µ3 = 0.

Stationarity: cf ′α∗
L

= 0 ⇐⇒ cd(α∗H ,α
∗
L)(1−ρα∗H)κ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ κ(α∗H , α

∗
L) = 0 ⇐⇒ 1 − η(α∗H , α

∗
L) =

−η′αL(α∗H , α
∗
L)(α∗H − α∗L); cf ′α∗

H
= 0 ⇐⇒ cd(α∗H ,α

∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ cd(α∗H ,α

∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
= 0 ⇐⇒ γ(α∗H , α

∗
L) =

0 ⇐⇒ 1− η(α∗H , α
∗
L) = η′αH (α∗H , α

∗
L)(α∗H −α∗L)

(1−ρα∗L)

(1−ρα∗
H

)
.

Since we have that α∗H >α
∗
L, we can see that this can never happen if −η′αL(α∗H , α

∗
L)≥ η′αH (α∗H , α

∗
L).
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Potential Candidate 5: (α∗H = α∗L ∈ (0,1)).

Complementary Slackness: µ1 = 0; µ2 6= 0⇒ α∗H = α∗L; µ3 = 0.

Stationarity: µ2 = cf ′α∗
H

=
cd(α∗H ,α

∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(α∗H ,α

∗
L)(1−ρα∗L)

g(α∗
H
,α∗
L

)
.

Dual Feasibility: µ2 ≥ 0 ⇐⇒ − cd(α∗H ,α
∗
L)(1−ρα∗H)

g(α∗
H
,α∗
L

)
≥ 0 ⇐⇒ −(1− ρα∗L)≥ 0 which is never the case.

Potential Candidate 6: (α∗H = α∗L = 0).

Complementary Slackness: µ1 6= 0⇒ α∗L = 0; µ2 6= 0⇒ α∗H = α∗L; µ3 = 0.

Stationarity: µ2 = cf ′α∗
H

=
cd(α∗H ,α

∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(0,0)

g(0,0)
.

Dual Feasibility: µ2 ≥ 0 ⇐⇒ − cd(0,0)

g(0,0)
≥ 0 which is never the case.

Potential Candidate 7: (α∗H = α∗L = 1).

Complementary Slackness: µ1 = 0; µ2 6= 0⇒ α∗H = α∗L; µ3 6= 0⇒ α∗H = 1.

Stationarity: µ2 =−cf ′α∗
L

=− cd(α∗H ,α
∗
L)γ(α∗H ,α

∗
L)

g(α∗
H
,α∗
L

)
=− cd(1,1)(1−ρ)

g(1,1)
.

Dual Feasibility: µ2 ≥ 0 ⇐⇒ − cd(1,1)(1−ρ)
g(1,1)

=−(1− ρ)≥ 0 which is never the case.

We can see that if −η′αL(αH , αL)≥ η′αH (αH , αL), only candidates 1 and 2 comply with the KKT conditions.

This means that if −η′αL(αH , αL)≥ η′αH (αH , αL), then only an honor policy or an upgrading policy can be

optimal. Importantly, since we have that α∗H = 1 in both candidates, from Lemma 1, the α∗L ∈ [0,1) that

minimizes the over-prioritization probability δL(1, αL) = η(1, αL) +αL(1− η(1, αL)), minimizes the expected

delay cost in the system.
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Appendix E: A Numerical Analysis on the Performance of the Optimal Scheduling
Policy

In this section, we conduct a numerical analysis on the performance of the optimal α-policy (i.e., honor

policy or upgrading policy). For this, we first present a general expression for the expected delay cost in the

system under a given α-policy, πα, and under the First-Best (FB) policy i.e., the cµ policy assuming fully

observable customer types, which amounts to prioritizing the H class:

Cπα(δπαH , δπαL ) =

(
ρ2

1− ρ

)
pHcH(1− ρ(1− δπαH )) + pLcL(1− ρδπαL )

pH(1− ρ(1− δπαH )) + pL(1− ρδπαL )
, (15)

CFB =

(
ρ2

1− ρ

)
pHcH(1− ρ) + pLcL
pH(1− ρ) + pL

. (16)

Recall that δπαH and δπαL , as in expressions (10) and (11), represent the under and over-prioritization prob-

abilities that a given α-policy, πα, achieves. For example, expression (15) can capture the cost under the

identified optimal α-policy, π∗α, by setting δ
π∗α
H = 1− α∗H and δ

π∗α
L = Φ(τ(∆α∗)) + α∗L(1−Φ(τ(∆α∗))), where

∆α∗ = α∗H − α∗L with α∗H and α∗L as described in Proposition 1. Recall that (α∗H = 1, α∗L = 0) represents an

honor policy, and (α∗H = 1, α∗L ∈ (0,1)) represents an upgrading policy. Also, expression (15) can capture the

cost under a FCFS policy by setting δπαH = 0 and δπαL = 1 (or vice versa).

Percentage cost increase. To study the performance of a given α-policy, πα, we measure the percentage

cost increase that it yields in comparison to the FB policy:

rπα =
Cπα(δπαH , δπαL )−CFB

CFB
∗ 100. (17)

We note that under the optimal α-policy, π∗α, the under-prioritization probability is eliminated, δ
π∗α
H = 0,

and the over-prioritization probability is δ
π∗α
L ∈ (0,1). Based on this, we begin by studying some comparative

statics of rπα for α-policies, πα, that achieve δπαH = 0 and δπαL ∈ (0,1). Note that this includes π∗α.

Proposition 3. Let πα be an α-policy that for fixed (αH , αL) achieves δπαH = 0 and δπαL ∈ (0,1), and let

rπα be the percentage cost increase that it yields in comparison to the First-Best policy in expression (17).

For ρ∈ (0,1), pH ∈ (0,1), and cH > cL > 0, we have the following properties:

• rπα increases in cH and decreases in cL.

• rπα is a unimodal function of pH , with a unique maximum at p̄H ∈ (0,1). Moreover, we have that

lim
pH→0

rπα = 0 and lim
pH→1

rπα = 0.
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• rπα is a unimodal function of ρ, with a unique maximum at ρ̄∈ (0,1). Moreover, we have that lim
ρ→0

rπα =

0 and lim
ρ→1

rπα = 0.

Proof. The expression for the percentage cost increase is given by:

rπα =
Cπα(δπαH , δπαL )−CFB

CFB
∗ 100

=
(cH − cL)pHpLρ(δπαH + δπαL (1− ρ))

(pHcH(1− ρ) + pLcL)(pH(1− ρ(1− δπαH )) + pL(1− ρδπαL ))
∗ 100. (18)

From (18) we can easily see that lim
ρ→0

rπα = 0, lim
pH→0

rπα = 0, and lim
pH→1

rπα = 0. For policies that perform

better than FCFS (i.e., δπαH + δπαL < 1), from (18) we can observe that lim
ρ→1

rπα =
(cH−cL)pHδ

πα
H

pHcLδ
πα
H

+pLcL(1−δπα
L

)
∗ 100.

Upon further inspection, we can see that for any policy πα that achieves δπαH = 0 and δπαL < 1, we have that

rπα =
(cH−cL)pHpLρδ

πα
L

(1−ρ)
(pHcH(1−ρ)+pLcL)(pH(1−ρ)+pL(1−ρδπα

L
))
∗ 100, and thus lim

ρ→1
rπα = 0. We note that this is always the case

for both an honor policy and an upgrading policy. In contrast, consider a FCFS policy (i.e., δH = 0 and

δL = 1) from (18) we can see that lim
ρ→1

rFCFS = (cH−cL)pH
cL

∗ 100.

Based on expressions (15)- (18), for policies that achieve δπαH = 0 and δπαL ∈ (0,1), after some algebraic

manipulations we can see that for ρ∈ (0,1) and pH ∈ (0,1):

∂rπα

∂cH
=

cLδ
πα
L pHpLρ(1− ρ)(1− ρpH)

(pHcH(1− ρ) + pLcL)2(pH(1− ρ) + pL(1− ρδπαL ))
∗ 100> 0, (19)

∂rπα

∂cL
=− cHδ

πα
L pHpLρ(1− ρ)(1− ρpH)

(pHcH(1− ρ) + pLcL)2(pH(1− ρ) + pL(1− ρδπαL ))
∗ 100< 0, (20)

∂rπα

∂ρ
=

(cH − cL)pHpLδ
πα
L κ(ρ)

(pHcH(1− ρ) + pLcL)2(pH(1− ρ) + pL(1− ρδπαL ))2
∗ 100, (21)

κ(ρ) = pHcH(1− ρ)2 + pLcL(1− ρ(2− ρ(pH + pLδ
πα
L ))), (22)

∂κ(ρ)

∂ρ
=−2(pHcH(1− ρ) + pLcL(1− ρ(pLδ

πα
L + pH)))< 0. (23)

∂rπα

∂pH
=

(cH − cL)ρ(1− ρ)δπαL ν(pH)

(pHcH(1− ρ) + pLcL)2(pH(1− ρ) + pL(1− ρδπαL ))2
∗ 100, (24)

ν(pH) = cL(1− pH)2(1− ρδπαL )− cHp2
H(1− ρ)2, (25)

∂ν(pH)

∂pH
=−2(pHcH(1− ρ)2 + pLcL(1− ρδπαL ))< 0. (26)

Note that κ(0) = pHcH + pLcL > 0, κ(1) =−cLp2
L(1− δπ

∗
α
L )< 0, and that ∂κ(ρ)

∂ρ
< 0. Then, since κ(ρ) is a

continuous function of ρ, we conclude that there exists a unique ρ̄∈ (0,1) such that κ(ρ̄) = 0 and consequently

a unique ρ̄ ∈ (0,1) such that ∂rπα

∂ρ
= 0. Since ∂rπα

∂ρ
is positive below ρ̄ ∈ (0,1) and negative above it, we
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conclude that ρ̄∈ (0,1) maximizes rπα . Similarly, note that ν(0) = cL(1− ρδπαL )> 0, ν(1) =−cH(1− ρ)2 < 0,

and that ∂ν(pH)

∂pH
< 0. Then, since ν(pH) is a continuous function of pH , we conclude that there exists a unique

p̄H ∈ (0,1) such that ν(p̄H) = 0 and consequently a unique p̄H ∈ (0,1). Since ∂rπα

∂pH
is positive below p̄H ∈ (0,1)

and negative above it, we conclude that p̄H ∈ (0,1) maximizes rπα .

Interestingly, Proposition 3 shows that the percentage cost increase metric is unimodal in system congestion

and that for sufficiently high levels of congestion, ρ≥ ρ̄, the performance of the considered α-policies gets

increasingly closer (as ρ increases) to that of the FB policy. The intuition comes from Lemma 1, which states

that as congestion increases, the delay cost in the system is increasingly dominated by the under-prioritizing

probability δπαH (rather than the over-prioritization δπαL ). When system congestion is sufficiently large, ρ≥ ρ̄,

the percentage cost increase metric rπα decreases since we have that δπαH = 0 and that the over-prioritization

errors δπαL becomes increasingly (as congestion increases) negligible compared to the total waiting cost in the

system. Also, Proposition 3 shows that the percentage cost increase metric is unimodal in the proportion of

H type customers and that for very low or very high pH levels, the performance of the considered α-policies

approaches that of the FB policy. Intuitively, if there is only one type of customer, the delay cost in the

system cannot be modified through scheduling.

E.1. Numerical Analysis

Given the properties of the rπα metric, we conduct a numerical analysis to gain further insight into the

performance of the optimal α-policy and its dependence on customer misreporting behaviour. For this,

we assume that customers misreport with probability Φ((∆α)ϕ), where θ ∼ Exp(γ) so that Φ((∆α)ϕ) =

1− e−γ(∆α)ϕ . We consider such a functional form for different reasons. First, such a proposed specification

is flexible as it allows the function Φ to depend on its argument in a linear, strictly concave, or strictly

convex fashion through the parameter ϕ. Second, in Appendix B.4, we show that such specification achieves

a good fit to our experimental data and good out-of-sample predictive ability. Third, based on Proposition

1, such a specification allows to compute the optimal policy easily: Honor policy is optimal whenever ϕγ ≤ 1,

and upgrading is optimal otherwise. In particular, the optimal upgrading probability is the unique α∗L that

solves 1−ϕγ(1−α∗L)ϕ = 0, which can be easily computed numerically. Finally, such a specification presents

a natural interpretation for its parameters in terms of lying behaviour: Populations with higher ϕ are more

responsive to upgrading, in the sense that, for ϕ= 0, misreporting is not affected by upgrading at all, and
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for any level of upgrading, higher values of ϕ> 0 correspond to lower levels of misreporting. Also, higher γ

values represent more dishonest populations since for the exponential distribution we have that the expected

lying aversion is E[θ] = 1/γ. This provides intuitive and parsimonious insights in the discussion of the results.

In our numerical analysis, we consider different values for system parameters cH , cL, pH , pL, ρ and misre-

porting behaviour parameters γ and ϕ. In Figures 3 - 5, we report the results of representative examples

where ϕ ∈ {1,3,5} and γ ∈ {0.2,1,2}. For these γ values, the misreporting prevalence in the absence of

upgrading, i.e., Φ(1), is equal to 0.18,0.63, and 0.86, respectively. In particular in Figure 3, we keep cH =

5, cL = 1, pH = 0.5 fixed and vary ρ ∈ (0,1). In Figure 4, we keep cH = 5, cL = 1, ρ = 0.85 fixed and vary

pH ∈ (0,1). And finally, in Figure 5, we keep cL = 1, ph = 0.5, ρ= 0.85 fixed and vary cH ∈ [2,500]. Figures 3

- 5 show the percentage cost increase over the FB policy achieved under the optimal α-policy, and under a

FCFS policy for comparison - this comparison allows us to understand the value of using customer claims

for their scheduling. Recall that the optimal α-policy can be either an honor policy (i.e., α∗H = 1, α∗L = 0) or

an upgrading policy (i.e., α∗H = 1, α∗L ∈ (0,1)). Thus, to illustrate the difference between these two, in Figures

3 - 5 we also present the percentage cost increase of the honor policy even when this policy is not optimal.

Results and Discussion. Recall that the parameters ϕ and γ capture, respectively, the two factors that

determine the optimal α-policy: (1) the responsiveness to upgrading, and (2) the level of dishonesty in a given

customer population. From Proposition 1, we know that upgrading is optimal whenever the semi-elasticity

−S(1)> 1 if, and only if ϕγ > 1, and an honor policy is optimal otherwise.

First, for a fixed γ and sufficiently high ϕ (i.e., ϕγ > 1), the optimal α-policy is an upgrading policy.

In particular, we can see in all Figures 3 - 5, that as the parameter ϕ increases, the performance of the

optimal upgrading policy gets closer to the FB policy. This happens since populations with higher ϕ are

more responsive to upgrading. The optimal α-policy is an upgrading policy also for fixed ϕ and sufficiently

high γ (i.e., ϕγ > 1). In this case, we can see that as γ increases, the performance of upgrading in comparison

to an honor policy improves. Since higher γ values represent more dishonest populations, i.e., E[θ] = 1/γ,

this suggests that upgrading policies are well warranted for more dishonest populations.

For a fixed ϕ and sufficiently low γ (i.e., ϕγ ≤ 1), the optimal α-policy is an honor policy. In particular,

we can see in all Figures 3 - 5, that in this case such policy captures most of the potential improvements

(i.e., it is very close to the FB policy). This happens since an honor policy provides full priority to those

that make H claims, and when customers are very honest this is similar to the FB policy where H types are



Rodriguez, Ibrahim, and Zhan: On Customer (Dis)honesty in Unobservable Queues
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 75

provided full priority. More generally, as γ decreases, we can see in all Figures 3 - 5, that the performance of

the optimal α-policy (either honor policy or upgrading) improves since lower γ values represent more honest

customer populations.

Overall, we see that the optimal α-policy performs well under the considered parameters. From Figures

3 - 5, we see that the optimal α-policy yields well below the 50% cost increase and does not change much

as ρ, pH , and cH change. Moreover, based on the considered parameters, we see (in Figure 5 for parameters

cH = 500, cL = 1, pH = 0.5, ρ = 0.85, γ = 2 and ϕ = 1) that the highest difference between the optimal α-

policy and the FB policy is given by 150% cost increase (i.e., a cost that is 2.5 times higher than the FB

policy). Following this, to get a better sense of a worst-case type of performance for the optimal α-policy, we

numerically compute the values for pH and ρ that maximize the percentage cost increase given the parameters

cH = 500 and cL = 1 for each of the ϕ ∈ {1,3,5} and γ ∈ {0.2,1,2} pairs. In Table 15 (a), we show such a

maximum percentage cost increase. Moreover, as a comparison, in (b) we present the percentage cost increase

that the FCFS policy yields at the same identified parameters pH and ρ.

We can observe from Table 15 that, due to customers’ lying aversion, Managers can considerably improve

the performance in the system by using customers’ own claims. For example, in (a) we see that the optimal

α-policy can yield up to a 363.08% cost increase over the FB policy (i.e., a cost that is 4.63 times higher than

the FB policy), while for the same system parameters, a FCFS policy yields a 4711.02% increase (i.e., a cost

that is 48.11 times higher than the FB policy). We note that these worst-case performances are calculated

under “extreme” conditions (e.g., γ = 2 represents a customer population where 86% of L types misreport).

Of course, it remains that the performance of the optimal α-policy depends entirely on customers lying costs,

such that in the unrealistic case where everyone misreports, its performance will be the same as under FCFS.

Table 15 Maximum percentage cost increase over the FB policy for cH =500, cL =1, γ=2 and ϕ=1

(a) Optimal α-policy

ϕ= 5 ϕ= 3 ϕ= 1

γ = 0.2 20.06% 20.06% 20.06%

γ = 1 61.08% 89.37% 148.74%

γ = 2 82.77% 133.58% 363.08%

(b) FCFS

ϕ= 5 ϕ= 3 ϕ= 1

γ = 0.2 2347.12% 2347.12% 2347.12%

γ = 1 2735.11% 2975.03% 3425.23%

γ = 2 2921.61% 3313.43% 4711.02%
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Figure 3 Percentage cost increase over the FB policy under optimal α-policy, honor policy, and FCFS policy for

different levels of system congestion ρ.
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Figure 4 Percentage cost increase over FB under optimal α-policy, honor policy, and FCFS policy for different

levels of H type proportion pH .
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Figure 5 Percentage cost increase over FB under optimal α-policy, honor policy, and FCFS policy for different

levels of H type delay sensitivity cH .
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Notes: cL = 1, pH = 0.5, ρ= 0.85,ϕ∈ {1,3,5}, γ ∈ {0.2,1,2}, and cH ∈ [2,500].
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Appendix F: A Numerical Analysis of the Optimal Policy when Misreporting
Depends on Waiting Times

In this work, we have experimentally shown that misreporting behaviour depends on the routing probabilities

and does not vary as the difference in waiting times between queues, ∆W , changes. In consequence, we

have modelled the misreporting probability in line with such empirical observations and derived the optimal

scheduling policy in Proposition 1. To better understand the impact of capturing such empirical observations

in our model, in this section, we study how the identified policy in Proposition 1 performs if the difference

in waiting times did actually influence misreporting behaviour. To do so, we consider two of the common

models in the literature described in §5.2. We consider that the underlying true misreporting behaviour is

consistent with a fixed lying cost and a quadratic lying cost model, respectively. Based on such models, we

have seen in §5.2 that customers best respond by misreporting with probabilities:

[fixed] P(Y = y|X = x) = Φ

(
cx∆α∆W

)
for y 6= x, (27)

[quadratic] P(Y = y|X = x) = Φ

(
1

cx∆α∆W

)
for y 6= x, (28)

where ∆α= αy−αx and ∆W =W2−W1. These models allow to study the impact of ∆W in two directions:

In a fixed cost model, misreporting increases in ∆W , while in a quadratic model, it decreases in ∆W . For

our numerical analysis, we consider the case in which θ∼Exp(γ), such that the best response misreporting

probability under a fixed cost model is given by Φ(cx∆α∆W ) = 1− e−γcx∆α∆W , and under a quadratic cost

model by Φ(1/cx∆α∆W ) = 1− e−
γ

cx∆α∆W .

For those considered lying cost functions, the misreporting probability in equilibrium (denoted by η), arises

from the solution of a fixed point problem. For the fixed lying cost case, we have that η = Φ(cx∆α∆W ).

For the quadratic lying cost case, we have that η = Φ(1/cx∆α∆W ). These represent fixed point problems

since the difference between waiting times in our M/M/1 system (see §3), ∆W = ρ2

µ(1−ρ)(1−ρ1)
, with ρ1 =

ρ(pH(1−δH)+pLδL(η)), is itself a function of the equilibrium misreporting probability. In particular, focusing

on the case in which L type customers are those that have the incentive to misreport (i.e., αH > αL), we

have that ρ1 = ρ(pHαH + pL(αL + η∆α)). Recall that for any αH <αL, L type customers are given priority

over H type customers, and since cH > cL the waiting cost in the system is higher than in a FCFS policy.

Also, for αH = αL, irrespective of customers’ claiming behaviour, the waiting cost in the system is equal to

a FCFS policy.
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For both lying-cost functions, we solve for the customer equilibrium numerically. We also identify the

optimal α-policy numerically with the use of nloptr package in R. That is, we identify the routing probabilities

α∗H and α∗L that minimize the waiting cost in the system, when customer misreporting behaviour is in line

with the fixed and quadratic lying cost models.

As mentioned above, our main objective is to understand how the identified policy in Proposition 1

performs under the case in which the difference in waiting times, ∆W , does influence misreporting behaviour.

Moreover, we are interested in studying how bad is the performance of the identified policy in Proposition 1

in comparison to the optimal α-policy. For this, we derive policies that assume (incorrectly) that customers

misreport with probability Φ((∆α)ϕ), where θ ∼ Exp(γ) so that Φ((∆α)ϕ) = 1 − e−γ(∆α)ϕ . As described

in Appendix E, among other benefits, this functional specification presents a natural interpretation for its

parameters in terms of lying behaviour: Populations with higher ϕ are more responsive to upgrading, and

higher γ values represent more dishonest populations.. Since the true misreporting behaviour, in this analysis,

is indeed affected by the difference in waiting times, we call such policies naive policies. Based on Proposition

1, under the incorrect assumption that misreporting is given by 1− e−γ(∆α)ϕ , such naive policies are given

by: honor policy whenever ϕγ ≤ 1, and upgrading otherwise, with upgrading probability as the unique α∗L

that solves 1−ϕγ(1−α∗L)ϕ = 0.

In line with the numerical analysis in Appendix E, we study the performance of a policy in terms of

the percentage cost increase that it brings in comparison to the First-Best (FB) policy (see Appendix E

for details). Also, to study the performance of the naive policies in comparison to the optimal α-policy, we

compute the percentage cost increase that a naive policy brings in comparison to the optimal α-policy. In our

numerical analysis, we consider different values for system parameters cH , pH , ρ and misreporting behaviour

parameters γ and ϕ. In Figures 6 - 11, we report the results of representative examples. In particular, for the

fixed and quadratic models respectively, in Figures 6 and 9, we keep cH = 5, cL = 1, pH = 0.5 fixed and vary

ρ∈ (0,1). For the fixed and quadratic models respectively, in Figures 7 and 10, we keep cH = 5, cL = 1, ρ= 0.5

fixed and vary pH ∈ (0,1). Finally, for the fixed and quadratic models respectively, in Figures 8 and 11, we

keep cL = 1, pH = 0.5, ρ= 0.5 fixed and vary cH ∈ [2,500].

F.1. Results and Discussion

Figures 6 - 11 show the results of the analysis for different γ ∈ {0.2,1,2} values for the optimal α-policy,

and for different γ ∈ {0.2,1,2} and ϕ ∈ {1,3,5} values for the naive policies. In particular, Figures 6 - 11



Rodriguez, Ibrahim, and Zhan: On Customer (Dis)honesty in Unobservable Queues
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 81

show, in the first row, the identified optimal α-policy and the naive policies. In the second row, they show

the misreporting probability that arises in equilibrium under those policies. In the third row, they show

the percentage cost increase that those policies yield over the FB policy. We also include the percentage

cost increase that a FCFS policy achieves over the FB policy for comparison - this comparison allows us to

understand the value of using customer claims for their scheduling. Finally, in the last row, Figures 6 - 11,

show the percentage cost increase that the naive policies and a FCFS policy yield over the optimal α-policy.

Fixed lying cost model. We find that the optimal α-policy is either an honor policy (i.e., α∗H = 1 and

α∗L = 0) or an upgrading policy (i.e., α∗H = 1 and α∗L ∈ (0,1)). The difference between this optimal policy and

the one derived in Proposition 1, is that we that the conditions under which upgrading is optimal, and the

actual upgrading level, all depend on system parameters. This happens since under the fixed lying cost model,

misreporting depends on waiting times. We have numerically observed that other types of partial priority

policies (e.g., 1 < αH < αL < 0) can achieve optimality as well, i.e., the optimal policy is not necessarily

unique in this case. To illustrate the parallel between an optimal α-policy and the one derived in Proposition

1, we report here the upgrading policy that indeed achieves optimality. In particular, from Figure 6, we

see that in the optimal α-policy, an honor policy is optimal for sufficiently low levels of congestion, and an

upgrading policy (whose upgrading level increases in system congestion) is optimal for sufficiently high levels

of congestion. This follows since we observe that customer misreporting probability in equilibrium increases

in ρ, and higher levels of the upgrading probability, αL, induce more honesty. Also, from Figure 7, we see

that when an upgrading policy is used, the upgrading level increases in the proportion of H types. This

follows since we observe that customer misreporting probability in equilibrium increases in pH and higher

levels of the upgrading αL probability induce more honesty.

In terms of performance, we can see from Figures 6 - 8, that the optimal α-policy always performs better

than FCFS, and that naive policies perform better than FCFS for most considered system parameters. We

note that under a fixed cost model, for a sufficiently high congestion level, it is possible for all customers

to misreport in equilibrium. If all customers misreport, then the delay cost in the system is equivalent to

the one under a FCFS policy. The optimal α-policy allows to perform better than a FCFS scheme, since

it upgrades more customers as congestion increases. Having said this, we note that the naive policies and

the optimal α-policy provide a similar percentage cost increase over the FB policy across the considered
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system parameters. Indeed, we further note that the percentage cost increase that the naive policies yield

over the optimal α-policy is close to 0. Finally, we see that changes in the parameter ϕ have little effect on

the performance of the naive policies.

In Appendix E, we had seen that the benefits of using customer claims for the performance of the system

were particularly relevant under high levels of system congestion. In the case of a fixed lying cost model,

since misreporting increases in system congestion, such benefits become less relevant. Indeed, we can see that

for high system congestion, the performance of all considered policies (including FCFS) are very similar.

This result highlights the managerial value of the experimental finding that misreporting behaviour does not

increase in ∆W (see §6.3). Under this identified misreporting behaviour property, and in light of the results

under a fixed cost model, the relevance of using customer claims for their scheduling is accentuated.

Quadratic lying-cost model. In the case of a quadratic lying cost, we can observe in Figures 9 - 11,

that for all the considered system parameters, the optimal α-policy is an honor policy (i.e., α∗H = 1, α∗L = 0).

This happens because we observe that the customer misreporting probability in equilibrium decreases in αH

and increases in the αL probability.

In terms of performance, we can see from Figures 9 - 11, that the optimal α-policy and the naive policies

perform better than FCFS for most considered system parameters. We note that under a quadratic cost

model, for a sufficiently low congestion level, it is possible for all customers to misreport in equilibrium. If all

customers misreport, then the delay cost in the system is equivalent to one under a FCFS policy. Importantly,

we see that for sufficiently high levels of system congestion, the optimal α-policy and the naive policies

provide good system performances. This happens because we can observe that misreporting behaviour in

equilibrium decreases in system congestion. We also note that the naive policies and the optimal α-policy

provide a similar percentage cost increase over the FB policy across the considered system parameters.

Indeed, we further note that the percentage cost increase that the naive policies yield over the optimal

α-policy is close to 0. The performance loss from naive policies arises when customers are upgraded. Since

in this case, upgrading does not incentivize more honesty, this control only increases the over-prioritization

probability. Finally, we see that changes in ϕ have little effect on the performance of the naive policies.

Overall, we observe that the identified optimal α-policy in our numerical analysis is very similar to the one

derived in Proposition 1. For a quadratic lying cost model, it is an honor policy (i.e., α∗H = 1, α∗L = 0), and
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for a fixed lying cost model, it is either an honor policy or an upgrading policy (i.e., α∗H = 1 and α∗L ∈ (0,1))

where the actual upgrading level depends on system and lying behaviour parameters. We recall that because

waiting times do not affect misreporting behaviour in Proposition 1, system parameters do not play a role

there. Finally, for the optimal α-policy and naive policies, in the fixed (quadratic) lying cost case, an increase

in ∆W affects their performance negatively (positively) since misreporting increases (decreases) in system

congestion. Ultimately, the performances of all of these policies depend strongly on the level of honesty in

the customer population. Importantly, in both of the fixed and quadratic lying cost cases, even though naive

policies ignore the effect of waiting time on misreporting behaviour, we see that they allow to bring most of

the benefits from the optimal α-policy.
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Figure 6 Numerical results under fixed lying cost model for different levels of system congestion ρ.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

( γ = 0.2 )

ρ

U
pg

ra
di

ng
 P

ro
ba

bi
lit

y 
α L

Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

( γ = 0.2 )

ρ

E
qu

ili
br

iu
m

 M
is

re
po

rt
in

g 
P

ro
ba

bi
lit

y

Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

( γ = 0.2 )

ρ

%
 C

os
t I

nc
re

as
e 

ov
er

 F
irs

t−
B

es
t

FCFS
Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

( γ = 0.2 )

ρ

%
 C

os
t I

nc
re

as
e 

ov
er

 O
pt

im
al

 α
−

po
lic

y

FCFS
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

( γ = 1 )

ρ
U

pg
ra

di
ng

 P
ro

ba
bi

lit
y 

α L

Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

( γ = 1 )

ρ

E
qu

ili
br

iu
m

 M
is

re
po

rt
in

g 
P

ro
ba

bi
lit

y

Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

( γ = 1 )

ρ

%
 C

os
t I

nc
re

as
e 

ov
er

 F
irs

t−
B

es
t

FCFS
Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

( γ = 1 )

ρ

%
 C

os
t I

nc
re

as
e 

ov
er

 O
pt

im
al

 α
−

po
lic

y

FCFS
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

( γ = 2 )

ρ

U
pg

ra
di

ng
 P

ro
ba

bi
lit

y 
α L

Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

( γ = 2 )

ρ
E

qu
ili

br
iu

m
 M

is
re

po
rt

in
g 

P
ro

ba
bi

lit
y

Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

( γ = 2 )

ρ

%
 C

os
t I

nc
re

as
e 

ov
er

 F
irs

t−
B

es
t

FCFS
Optimal α−policy
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

( γ = 2 )

ρ

%
 C

os
t I

nc
re

as
e 

ov
er

 O
pt

im
al

 α
−

po
lic

y

FCFS
Naive policy (ϕ = 1)
Naive policy (ϕ = 3)
Naive policy (ϕ = 5)

Notes: cH = 5, cL = 1, pH = 0.5,ϕ∈ {1,3,5}, γ ∈ {0.2,1,2}, and ρ∈ (0,1). Also, we have αH = 1 under the optimal α-policy and
naive policies.
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Figure 7 Numerical results under fixed lying cost model for different levels of H type proportion pH .
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Notes: cH = 5, cL = 1, ρ= 0.5,ϕ∈ {1,3,5}, γ ∈ {0.2,1,2}, and pH ∈ (0,1). Also, we have αH = 1 under the optimal α-policy and
naive policies.
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Figure 8 Numerical results under fixed lying cost model for different levels of H type delay sensitivity cH .
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Notes: cL = 1, pH = 0.5, ρ= 0.5,ϕ∈ {1,3,5}, γ ∈ {0.2,1,2}, and cH ∈ [2,500]. Also, we have αH = 1 under the optimal α-policy
and naive policies.
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Figure 9 Numerical results under quadratic lying cost model for different levels of system congestion ρ.
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Notes: cH = 5, cL = 1, pH = 0.5,ϕ∈ {1,3,5}, γ ∈ {0.2,1,2}, and ρ∈ (0,1). Also, we have αH = 1 under the optimal α-policy and
naive policies.
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Figure 10 Numerical results under quadratic lying cost model for different levels of H type proportion pH .
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Notes: cH = 5, cL = 1, ρ= 0.5,ϕ∈ {1,3,5}, γ ∈ {0.2,1,2}, and pH ∈ (0,1). Also, we have αH = 1 under the optimal α-policy and
naive policies.
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Figure 11 Numerical results under quadratic lying cost model for different levels of H type delay sensitivity cH .
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Notes: cL = 1, pH = 0.5, ρ= 0.5,ϕ∈ {1,3,5}, γ ∈ {0.2,1,2}, and cH ∈ [2,500]. Also, we have αH = 1 under the optimal α-policy
and naive policies.
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Appendix G: A Simulation Analysis on Data-driven Heuristics for the
Identification of the Optimal Upgrading Policy

We have seen in Proposition 1 that the optimal upgrading policy (αH = 1, αL ∈ [0,1)) depends on the

functional form of L type customers’ misreporting probability P(Y =H|X =L), which for simplicity we will

denote as η(αL). However, in practice, such functional form may be unknown to the Manager, and the only

available information is customers’ claim data: sets of binary claims (i.e., L and H claims) in response to

different αL values. We envision that the Manager would use different αL values, leading to different lying

proportions, in order to be able to estimate the underlying (unknown) customer lying behavior. Then, using

such estimates, the Manager can determine the optimal αL that should be used. In light of this, we study

how the Manager can set the optimal upgrading policy based on claim data alone.

Claim data: We assume that in the claim data, there are K different αL values (indexed as αkL for

k= 1, · · · ,K), and for each of them there are n independent binary claims (indexed as nk for k= 1, · · · ,K).

Moreover, we assume that the Manager knows the proportion of H types pH in the population, that H

types always claim their type, and that L types misreport with a probability according to the unknown

η(αL) function. Based on this, we have that for each k, the total number of H claims, Nk
H ∼B(nk, pH + (1−

pH)η(αkL)), is a binomial random variable.

G.1. Proposed data-driven heuristics

We propose different data-driven heuristics to determine the optimal upgrading policy and conduct a simu-

lation analysis to asses their performances.

Structural estimation heuristic. We propose to use Φ((∆αk)ϕ) = Φ((1−αkL)ϕ) (recall that we assume

that αH = 1) with θ∼Exp(γ) as a model for the unknown misreporting probability of customers, where the

parameters ϕ and γ are estimated from the claim data. We propose such functional form as it is flexible and

allows to easily identify the optimal policy. Let nk be the total number of claims and nkH the realized number

of H claims, for a given αkL. Given some claim data, it follows that the log-likelihood is:

L(ϕ,γ) =
∑
k

log
((nk
nkH

)
p
nkH
k (1− pk)n

k−nkH
)
,

where pk(ϕ,γ) = pH +(1−pH)Φ((1−αkL)ϕ). We estimate the parameters ϕ̂ and γ̂ that maximize L. Once we

compute such parameters, we can define the estimated upgrading policy α̂L based on Proposition 1: α̂L = 0
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if −S(1)≤ 1 ⇐⇒ ϕ̂γ̂ ≤ 1, otherwise if ϕ̂γ̂ > 1, the optimal upgrading probability is the unique α̂L that solves

1 + (1− α̂L)S(1− α̂L) = 0 ⇐⇒ 1− ϕ̂γ̂(1− α̂L)ϕ̂ = 0. We can easily solve for such α̂L numerically.

Stochastic approximation heuristics. We construct two simple heuristics based on algorithms used

to approximate extreme values of a function e(x) = E[F (x)] that cannot be computed directly, but only

estimated via noisy observations from a random variable F (x), depending on a parameter x. In our analysis,

since we assume that we do not have downgrading nor down-reporting, we have that there is no under-

prioritization error, i.e., δH = 0. Based on this and based on Lemma 1, it follows that the waiting cost in the

system is minimized at the αL that minimizes the over-prioritization error δL = αL + η(αL)(1−αL). Notice

that since η(αL) cannot be directly measured (because for a given number of H claims, the Manager does

not know which particular customers are honest and which ones are dishonest) we have that δL cannot be

directly measured. We can see that stochastic approximation is well suited for our setting since we want to

identify the αL that minimizes the function δL, and such function δL cannot be directly measured. As a first

step, we construct F (Nk
H , α

k
L) such that E[F (Nk

H , α
k
L)] = δL(αkL):

F (Nk
H , α

k
L) = αkL + (1− nk−Nk

H

nk(1− pH)
)(1−αkL),

E[F (Nk
H , α

k
L)] = αkL + (1− nk−E[Nk

H ]

nk(1− pH)
)(1−αkL)

= αkL + (1− nk−nk(pH + (1− pH)η(αkL))

nk(1− pH)
)(1−αkL)

= αkL + η(αkL)(1−αkL) = δL(αkL).

In particular, we study the performance of two heuristics based on a simple Random Search algorithm

and the Kiefer–Wolfowitz (KW) algorithm. The objective is to calculate an estimate, α̂L, of the optimal

upgrading probability, α∗L, which minimizes δL. In our random search heuristic, we draw independently

an αkL from U [0,1] for each k = 1,2, · · · ,K. Then, for each αkL, we collect nk claims, observe the realized

number of H claims nkH , and based on these compute F (nkH , α
k
L), which represent the realized values for

F (Nk
H , α

k
L) in the data. We define the estimated upgrading policy α̂L as the αkL that yields the lowest

F (nkH , α
k
L). The KW algorithm is a gradient-like method that uses finite differences to select αkL iteratively:

αk+1
L = αkL−zk(

F (mkH ,α
k
L+vk)−F (lkH ,α

k
L−vk)

2vk
), where vk = 1

5
k−1/3 represents a sequence of finite difference widths

for the gradient approximation, zk = k−1 represents a sequence of step sizes taken along the direction of the
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gradient, mk
H is the realized number of H claims for αkL + vk, and lkH is the realized number of H claims for

αkL − vk; see Kiefer and Wolfowitz (1952) for further details. If αkL + vk > 1, we use (1− vk) and evaluate

observe realization of F (Nk
H ,1−vk) in the data. Similarly, if αkL−vk < 0, we evaluate we use vk and evaluate

observe realization of F (Nk
H , vk) in the data. Based on the iterative rule, this process continues for K/2

iterations. We define the estimated upgrading policy α̂L as the last computed αkL.

We focus on the heuristics above as they are simple and represent different ways to use claim data to

identify the optimal upgrading policy. One benefit of the structural estimation heuristic is that it allows the

Manager to freely select any set of upgrading policies to investigate αkL. In contrast, the proposed stochastic

approximation heuristics restrict the way in which data is collected. Indeed, the random search heuristic

requires random selections of αkL, and the KW heuristic as a gradient-like method iteratively defines the

αkL. Based on this, another benefit of the structural estimation heuristic is that it can be used for already

existing data sets. On the other hand, one benefit of stochastic approximation heuristics is that they do not

require the Manager to assume a particular functional form to fit the unknown misreporting probability.

Finally, we note that one advantage of both structural estimation and random search heuristics is that they

can experiment with all defined αkL at once, while the KW requires a sequential one-by-one process. Overall,

while the above represent important considerations for Managers, ultimately, we are interested in assessing

their performance to identify the optimal upgrading policy.

Random Guess Benchmark. As a baseline for the performance of the mentioned heuristics, we evaluate

the performance of a random guess: The estimated upgrading policy α̂L is randomly drawn from U [0,1].

G.2. Simulation Analysis

To assess the performance of the proposed heuristics, we conduct a simulation analysis where we consider

different functional forms and parametrizations for customers’ misreporting probability η(αL). In particular,

we consider the following 4 functional forms with their respective parametrizations: (1) 1
c
Φ(1− αL) where

Φ is a beta CDF with parameters a ∈ {1,5}, b ∈ {1,3} and c ∈ {1.25,2,5}; (2) (1−αL)g

c((1−αL)g+αg
L

)
1
g

a functional

form based on Tversky and Kahneman (1992) probability weighting function, with g ∈ {0.5,0.75,1,2} and

c∈ {1.25,2,5}; (3) 1
c
e−(−log(1−αL))d a functional form based on Prelec (1998) probability weighting function,

with d ∈ {0.2,0.5,1,1.5} and c ∈ {1.25,2,5}; and (4) Φ((1 − αL)ϕ) where Φ is an exponential CDF with
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parameters ϕ ∈ {0.5,1,3,5} and γ ∈ {0.223,0.693,1.609}. Table 16 summarizes all considered functional

forms and parametrizations with their respective true optimal policy α∗L and true achieved over-prioritization

probability δ∗L based on such optimal policy. We select such functional forms and parametrizations to capture

customer populations that differ in their misreporting levels at αL = 0, and in the convexity/concavity of

their misreporting probability as a function of upgrading. In particular, we note that functional specification

(4) is the same as the one considered in the structural estimation heuristic. This serves as a baseline to study

the relative performance of the structural estimation heuristic in the remaining cases.

For a given functional form and parametrization, we fix some values of nk and K. For simplicity, we study

the case in which nk = n, that is, the case in which all nk are the same for all k. Depending on the heuristic

used (each heuristic uses different αkL as described above), we randomly generate a synthetic data set based

on Nk
H ∼B(nk, pH + (1−pH)η(αkL)) for each k. For the purposes of this analysis, in the structural estimation

heuristic, for a given K the αkL are selected such that α1
L = 0 and αkL = αk−1

L + 1
K

. Based on the K generated

data sets, a particular heuristic under consideration provides an estimated optimal policy α̂L. We call this

a run of the estimation procedure (i.e., the generation of an estimated optimal policy α̂L based on K data

sets). Since we know the true η(αL), we compute the absolute error of the estimated policy α̂L and the

true optimal policy α∗L in each run of the estimation procedure. We also compute the absolute error of the

achieved over-prioritization probability δ̂L = α̂L + η(α̂L)(1− α̂L) based on the estimated policy and the true

optimal δ∗L = α∗L + η(α∗L)(1−α∗L). We do this since the waiting cost in our model, as described in Lemma 1,

is directly driven by the over-prioritization probability δL, and since policies closer to α∗L do not necessarily

yield over-prioritization probabilities closer to δ∗L. We note that we do not asses the performance of the

heuristics based on deviations between the achieved and the optimal waiting cost directly. This is because

such deviations also depend on system parameters (e.g., for the same absolute error in over-prioritization,

waiting cost deviations increase in ρ).

For a given parametrization, we run the estimation procedure a 1000 times and, to get an average measure

of the heuristics performance in a given functional form, we compute the mean absolute error (MAE) of the

aforementioned metrics across parametrizations (for each functional form). To clarify, since a given functional

form consists of 12 different parametrizations, and for each parametrization we run the estimation procedure

a 1000 times, this means that the MAE represents the average of 12,000 absolute errors. We repeat this

process for all considered functional forms and for different values of pH ∈ {0.2,0.5,0.8}, K ∈ {6,50,100} and
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Table 16 Considered functional forms and parametrizations

Form a b c g d γ ϕ True α∗L True δ∗L

(1) 1 1 5 - - - - 0.000 0.200

(1) 1 3 5 - - - - 0.000 0.200

(1) 5 1 5 - - - - 0.036 0.197

(1) 5 3 5 - - - - 0.000 0.200

(1) 1 1 2 - - - - 0.000 0.500

(1) 1 3 2 - - - - 0.000 0.500

(1) 5 1 2 - - - - 0.197 0.331

(1) 5 3 2 - - - - 0.000 0.500

(1) 1 1 1.25 - - - - 0.375 0.688

(1) 1 3 1.25 - - - - 0.000 0.800

(1) 5 1 1.25 - - - - 0.269 0.391

(1) 5 3 1.25 - - - - 0.470 0.588

(2) - - 5 0.5 - - - 0.021 0.172

(2) - - 5 0.75 - - - 0.003 0.199

(2) - - 5 1 - - - 0.000 0.200

(2) - - 5 2 - - - 0.000 0.200

(2) - - 2 0.5 - - - 0.085 0.366

(2) - - 2 0.75 - - - 0.089 0.465

(2) - - 2 1 - - - 0.000 0.500

(2) - - 2 2 - - - 0.000 0.500

(2) - - 1.25 0.5 - - - 0.163 0.515

(2) - - 1.25 0.75 - - - 0.271 0.647

(2) - - 1.25 1 - - - 0.375 0.688

(2) - - 1.25 2 - - - 0.444 0.637

Form a b c g d γ ϕ True α∗L True δ∗L

(3) - - 5 - 0.2 - - 0.013 0.143

(3) - - 5 - 0.5 - - 0.012 0.189

(3) - - 5 - 1 - - 0.000 0.200

(3) - - 5 - 1.5 - - 0.000 0.200

(3) - - 2 - 0.2 - - 0.043 0.323

(3) - - 2 - 0.5 - - 0.084 0.425

(3) - - 2 - 1 - - 0.000 0.500

(3) - - 2 - 1.5 - - 0.000 0.500

(3) - - 1.25 - 0.2 - - 0.089 0.480

(3) - - 1.25 - 0.5 - - 0.210 0.599

(3) - - 1.25 - 1 - - 0.375 0.688

(3) - - 1.25 - 1.5 - - 0.506 0.725

(4) - - - - - 0.223 0.5 0.000 0.200

(4) - - - - - 0.223 1 0.000 0.200

(4) - - - - - 0.223 3 0.000 0.200

(4) - - - - - 0.223 5 0.022 0.199

(4) - - - - - 0.693 0.5 0.000 0.500

(4) - - - - - 0.693 1 0.000 0.500

(4) - - - - - 0.693 3 0.216 0.439

(4) - - - - - 0.693 5 0.220 0.361

(4) - - - - - 1.609 0.5 0.000 0.800

(4) - - - - - 1.609 1 0.379 0.771

(4) - - - - - 1.609 3 0.408 0.576

(4) - - - - - 1.609 5 0.341 0.460

Note: α∗L values are identified numerically with a simple exhaustive search and presented values for α∗L and δ∗L are rounded to
3 decimal places.

n ∈ {50,250,1000} (recall that for simplicity we study the case in which nk = n). We present the results of

the simulation analysis in the following Tables 17-19.

G.3. Results and Discussion

First, we can see that for all considered functional forms, the random guess benchmark yields a policy that

deviates approximately 41 percentage points (on average) from the true optimal policy. This, in turn, trans-
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lates into an over-prioritization that deviates approximately 22 percentage points (on average) from the true

minimum achievable over-prioritization probability. We can see that, for all functional forms, parametriza-

tions, and values for pH , K, and n, all considered heuristics perform better than such a random guess

benchmark. This shows that the proposed heuristics indeed manage to leverage customers’ claim-data to

define a better scheduling policy.

We note that, for a fixed K, the performance of the structural estimation heuristic, both in terms of the

provided policy and the achieved over-prioritization probability, improves as n increases, in all functional

forms. In contrast, only for functional form (4), for a fixed n, the performance of the heuristic improves

as K grows larger. For functional forms (1)-(3), for a fixed n, the performance of the heuristic does not

always improve as K grows larger. Moreover, we see that the performance of the heuristic in functional form

(4) is overall better than in the rest of the forms, (1)-(3). This is intuitive since as mentioned previously

this heuristic calibrates the same model as the one used in functional form (4). Importantly, we can see

that for functional forms (1),(2),(3), and (4) respectively, this heuristic provides in the worst case an over-

prioritization probability that deviates on average no more than 3.1, 4.4, 7.2, and 2.5 percentage points from

the true optimal δ∗L. This shows that the proposed functional form in the heuristic is flexible enough to

provide good performance even when the used model is not the same as the underlying true misreporting

probability.

We observe that the performance of the stochastic approximation heuristics, both in terms of the provided

policy and the achieved over-prioritization probability, improves as more data is available in all functional

forms. In particular, we see that for a fixed n, the performance improves as K increases. Similarly, for a fixed

K, the performance increases as n grows larger. We observe that for lower values of n and K, the random

search heuristic performs better than the KW heuristic, and for sufficiently large values of n and K, the KW

heuristic performs better than the random search heuristic, although this improvement is relatively small.

When comparing the heuristics, we can see that for low to medium n and K values, the structural

estimation heuristic performs better (both in terms of the provided policy and the achieved over-prioritization

probability) than the stochastic approximation heuristics, and for high n and K values the performance of

all heuristics is roughly similar. Finally, we can observe that in general, the performance of all heuristics

improves as pH decreases, that is, as the pool of true L type customers (which are those that may misreport)

increases.
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Based on our simulation results, as a general guideline we suggest using the proposed structural estimation

heuristic to identify the optimal policy, especially when the Manager does not have the possibility to collect

large amounts of data. Only if the Manager can collect large amounts of data we suggest using the stochastic

approximation heuristics. Indeed, we note that for all functional forms, and for n= 1000 and K = 100 the

stochastic approximation heuristics are able to identify policies that provide in the worst case an over-

prioritization probability that deviates on average no more than 1.6 percentage points from the true optimal

δ∗L. Finally, while the KW heuristic performs better than the random search heuristic for large amounts of

data, we propose to use the random search heuristic as such improvement is relatively small and because the

random search heuristic is easier to implement and does not require sequential data collection as in the case

of KW.

Overall we have shown that Managers can use claim data to set the optimal upgrading policy when the

underlying functional form of the misreporting probability is unknown. However, we want to emphasise

that we have focused on simple heuristics for the purpose of illustrating different data-driven approaches.

With this in mind, we highlight that the derived results and suggestions in this analysis should be taken

as initial/general guidelines for Managers, where further steps are well warranted to improve the observed

performance. In the case of the structural estimation heuristic, the investigated functional form was selected

as it is parsimonious, allows to retrieve the optimal policy in a tractable manner, and presents a natural

interpretation for its parameters in terms of lying behaviour.

To improve performance, Managers can further explore more general forms in the structural estimation

heuristic (e.g., forms that capture that misreporting is neither strictly convex nor concave for all upgrading

levels). In the case of the stochastic approximation heuristics, we selected simple heuristics to better commu-

nicate and illustrate how the data-driven identification of our policy can be formulated and solved in terms

of stochastic approximation. To improve the performance, Managers can further explore more sophisticated

algorithms (e.g., Broadie et al. (2011) proposes an adaptive version of KW with the aim of improving its

finite-time behaviour).
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Table 17 Simulation Results: Heuristics’ Performance for pH =0.2

Form n K

Structural Estimation Heuristic Random Search Heuristic KW Heuristic Random Guess

MAE MAE MAE MAE

|α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L|

(1) 50 6 0.066 0.010 0.163 0.060 0.183 0.074 0.418 0.222

(1) 50 50 0.067 0.008 0.083 0.025 0.105 0.026 0.418 0.222

(1) 50 100 0.066 0.007 0.071 0.021 0.094 0.021 0.418 0.222

(1) 250 6 0.058 0.008 0.139 0.051 0.168 0.070 0.418 0.222

(1) 250 50 0.065 0.007 0.060 0.015 0.073 0.015 0.418 0.222

(1) 250 100 0.064 0.007 0.051 0.013 0.063 0.012 0.418 0.222

(1) 1000 6 0.057 0.008 0.130 0.048 0.175 0.078 0.418 0.222

(1) 1000 50 0.064 0.007 0.044 0.011 0.055 0.011 0.418 0.222

(1) 1000 100 0.064 0.007 0.035 0.008 0.048 0.009 0.418 0.222

(2) 50 6 0.066 0.026 0.149 0.052 0.146 0.049 0.408 0.217

(2) 50 50 0.056 0.044 0.079 0.018 0.082 0.019 0.408 0.217

(2) 50 100 0.056 0.043 0.071 0.016 0.070 0.015 0.408 0.217

(2) 250 6 0.047 0.020 0.125 0.042 0.107 0.035 0.408 0.217

(2) 250 50 0.054 0.042 0.057 0.011 0.044 0.008 0.408 0.217

(2) 250 100 0.055 0.042 0.051 0.009 0.036 0.006 0.408 0.217

(2) 1000 6 0.043 0.018 0.116 0.040 0.091 0.033 0.408 0.217

(2) 1000 50 0.053 0.042 0.044 0.007 0.028 0.005 0.408 0.217

(2) 1000 100 0.054 0.042 0.038 0.005 0.022 0.004 0.408 0.217

(3) 50 6 0.058 0.050 0.152 0.061 0.141 0.052 0.418 0.230

(3) 50 50 0.048 0.071 0.078 0.022 0.077 0.023 0.418 0.230

(3) 50 100 0.046 0.072 0.070 0.018 0.065 0.018 0.418 0.230

(3) 250 6 0.037 0.049 0.126 0.050 0.101 0.040 0.418 0.230

(3) 250 50 0.045 0.072 0.053 0.013 0.040 0.011 0.418 0.230

(3) 250 100 0.044 0.072 0.046 0.010 0.032 0.008 0.418 0.230

(3) 1000 6 0.031 0.051 0.118 0.047 0.087 0.037 0.418 0.230

(3) 1000 50 0.044 0.072 0.038 0.009 0.026 0.007 0.418 0.230

(3) 1000 100 0.044 0.072 0.032 0.006 0.020 0.005 0.418 0.230

(4) 50 6 0.037 0.005 0.155 0.053 0.168 0.063 0.403 0.214

(4) 50 50 0.013 0.001 0.086 0.020 0.086 0.020 0.403 0.214

(4) 50 100 0.009 0.001 0.079 0.018 0.074 0.016 0.403 0.214

(4) 250 6 0.014 0.001 0.131 0.043 0.141 0.054 0.403 0.214

(4) 250 50 0.006 0.000 0.063 0.013 0.044 0.010 0.403 0.214

(4) 250 100 0.004 0.000 0.057 0.011 0.036 0.007 0.403 0.214

(4) 1000 6 0.007 0.000 0.122 0.041 0.129 0.051 0.403 0.214

(4) 1000 50 0.003 0.000 0.046 0.008 0.027 0.006 0.403 0.214

(4) 1000 100 0.002 0.000 0.04 0.006 0.022 0.005 0.403 0.214

Note: All results are rounded to 3 decimal places.
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Table 18 Simulation Results: Heuristics’ Performance for pH =0.5

Form n K

Structural Estimation Heuristic Random Search Heuristic KW Heuristic Random Guess

MAE MAE MAE MAE

|α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L|

(1) 50 6 0.078 0.016 0.178 0.067 0.212 0.091 0.418 0.222

(1) 50 50 0.068 0.009 0.100 0.032 0.140 0.042 0.418 0.222

(1) 50 100 0.067 0.008 0.087 0.027 0.126 0.035 0.418 0.222

(1) 250 6 0.059 0.008 0.149 0.054 0.170 0.069 0.418 0.222

(1) 250 50 0.064 0.007 0.073 0.020 0.085 0.020 0.418 0.222

(1) 250 100 0.063 0.007 0.064 0.017 0.074 0.016 0.418 0.222

(1) 1000 6 0.056 0.008 0.136 0.050 0.171 0.074 0.418 0.222

(1) 1000 50 0.062 0.007 0.054 0.013 0.063 0.014 0.418 0.222

(1) 1000 100 0.063 0.007 0.045 0.011 0.057 0.011 0.418 0.222

(2) 50 6 0.085 0.031 0.163 0.059 0.184 0.069 0.408 0.217

(2) 50 50 0.058 0.043 0.094 0.025 0.119 0.035 0.408 0.217

(2) 50 100 0.055 0.043 0.085 0.022 0.105 0.028 0.408 0.217

(2) 250 6 0.058 0.019 0.134 0.046 0.121 0.038 0.408 0.217

(2) 250 50 0.051 0.042 0.069 0.015 0.061 0.013 0.408 0.217

(2) 250 100 0.051 0.041 0.063 0.013 0.051 0.010 0.408 0.217

(2) 1000 6 0.052 0.018 0.122 0.042 0.098 0.034 0.408 0.217

(2) 1000 50 0.050 0.041 0.052 0.010 0.036 0.007 0.408 0.217

(2) 1000 100 0.051 0.041 0.045 0.007 0.030 0.005 0.408 0.217

(3) 50 6 0.082 0.050 0.166 0.067 0.178 0.072 0.418 0.230

(3) 50 50 0.049 0.069 0.094 0.029 0.116 0.040 0.418 0.230

(3) 50 100 0.047 0.070 0.085 0.025 0.101 0.033 0.418 0.230

(3) 250 6 0.049 0.040 0.135 0.053 0.115 0.043 0.418 0.230

(3) 250 50 0.045 0.071 0.064 0.018 0.055 0.016 0.418 0.230

(3) 250 100 0.044 0.071 0.058 0.015 0.044 0.012 0.418 0.230

(3) 1000 6 0.036 0.037 0.122 0.049 0.092 0.038 0.418 0.230

(3) 1000 50 0.044 0.071 0.046 0.011 0.033 0.010 0.418 0.230

(3) 1000 100 0.043 0.071 0.039 0.009 0.026 0.007 0.418 0.230

(4) 50 6 0.057 0.011 0.168 0.059 0.198 0.080 0.403 0.214

(4) 50 50 0.020 0.002 0.101 0.027 0.123 0.036 0.403 0.214

(4) 50 100 0.014 0.001 0.092 0.023 0.109 0.030 0.403 0.214

(4) 250 6 0.023 0.002 0.140 0.047 0.147 0.056 0.403 0.214

(4) 250 50 0.009 0.001 0.075 0.017 0.062 0.014 0.403 0.214

(4) 250 100 0.007 0.000 0.068 0.014 0.051 0.011 0.403 0.214

(4) 1000 6 0.010 0.001 0.127 0.043 0.132 0.051 0.403 0.214

(4) 1000 50 0.005 0.000 0.055 0.011 0.036 0.008 0.403 0.214

(4) 1000 100 0.004 0.000 0.049 0.009 0.029 0.006 0.403 0.214

Note: All results are rounded to 3 decimal places.
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Table 19 Simulation Results: Heuristics’ Performance for pH =0.8

Form n K

Structural Estimation Heuristic Random Search Heuristic KW Heuristic Random Guess

MAE MAE MAE MAE

|α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L| |α∗L− α̂L| |δ∗L− δ̂L|

(1) 50 6 0.104 0.031 0.206 0.082 0.282 0.135 0.418 0.222

(1) 50 50 0.078 0.014 0.128 0.045 0.231 0.092 0.418 0.222

(1) 50 100 0.072 0.011 0.112 0.039 0.211 0.079 0.418 0.222

(1) 250 6 0.067 0.012 0.170 0.063 0.194 0.081 0.418 0.222

(1) 250 50 0.066 0.008 0.094 0.029 0.120 0.035 0.418 0.222

(1) 250 100 0.064 0.008 0.084 0.025 0.105 0.028 0.418 0.222

(1) 1000 6 0.056 0.008 0.147 0.053 0.166 0.068 0.418 0.222

(1) 1000 50 0.062 0.007 0.071 0.019 0.081 0.019 0.418 0.222

(1) 1000 100 0.062 0.007 0.060 0.016 0.071 0.015 0.418 0.222

(2) 50 6 0.105 0.039 0.189 0.073 0.269 0.123 0.408 0.217

(2) 50 50 0.073 0.042 0.120 0.037 0.212 0.084 0.408 0.217

(2) 50 100 0.063 0.042 0.107 0.031 0.190 0.072 0.408 0.217

(2) 250 6 0.074 0.025 0.154 0.055 0.165 0.059 0.408 0.217

(2) 250 50 0.054 0.041 0.089 0.023 0.100 0.028 0.408 0.217

(2) 250 100 0.052 0.042 0.080 0.019 0.084 0.021 0.408 0.217

(2) 1000 6 0.059 0.019 0.132 0.045 0.111 0.036 0.408 0.217

(2) 1000 50 0.049 0.041 0.068 0.015 0.055 0.012 0.408 0.217

(2) 1000 100 0.050 0.041 0.060 0.012 0.045 0.009 0.408 0.217

(3) 50 6 0.105 0.054 0.193 0.082 0.267 0.127 0.418 0.230

(3) 50 50 0.062 0.068 0.121 0.042 0.213 0.093 0.418 0.230

(3) 50 100 0.054 0.069 0.109 0.036 0.190 0.080 0.418 0.230

(3) 250 6 0.071 0.044 0.156 0.063 0.156 0.060 0.418 0.230

(3) 250 50 0.047 0.068 0.087 0.027 0.096 0.032 0.418 0.230

(3) 250 100 0.045 0.070 0.077 0.022 0.078 0.025 0.418 0.230

(3) 1000 6 0.051 0.036 0.133 0.053 0.105 0.040 0.418 0.230

(3) 1000 50 0.044 0.070 0.061 0.017 0.050 0.015 0.418 0.230

(3) 1000 100 0.044 0.071 0.054 0.014 0.039 0.011 0.418 0.230

(4) 50 6 0.094 0.025 0.194 0.073 0.272 0.127 0.403 0.214

(4) 50 50 0.040 0.008 0.126 0.039 0.215 0.084 0.403 0.214

(4) 50 100 0.028 0.005 0.114 0.033 0.193 0.071 0.403 0.214

(4) 250 6 0.042 0.007 0.159 0.055 0.180 0.071 0.403 0.214

(4) 250 50 0.016 0.002 0.097 0.025 0.103 0.029 0.403 0.214

(4) 250 100 0.011 0.001 0.087 0.021 0.088 0.023 0.403 0.214

(4) 1000 6 0.019 0.002 0.138 0.046 0.143 0.055 0.403 0.214

(4) 1000 50 0.008 0.001 0.072 0.016 0.056 0.013 0.403 0.214

(4) 1000 100 0.006 0.000 0.065 0.014 0.046 0.010 0.403 0.214

Note: All results are rounded to 3 decimal places.
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