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Abstract. Problem Definition: Outpatient clinics face significant challenges in

appointment scheduling due to high demand, variability, and the persistent problem

of no-shows. Although the development of predictive models allows the design of

more advanced scheduling strategies, they also raise ethical concerns by potentially

exacerbating disparities in healthcare access. Our research examines the trade-offs

between operational efficiency and equitable service delivery. We explore the inte-

gration of stratified predictive show-up probabilities into scheduling decisions and

evaluate its impact on metrics such as provider overtime, patient waiting time, and

group and individual unfairness. Methodology/Results: Using numerical and the-

oretical analyses, we systematically assess the interaction between efficiency and

fairness in different systems. We consider a comprehensive range of scheduling levers,

including slot-length design, overbooking strategies, and patient sequencing, while

maintaining a practical focus on implementable policies. Our findings challenge the

necessity of stratified prediction, showing that well-designed scheduling strategies

can achieve strong performance without exacerbating group disparities. We also show

that, while it is possible to simultaneously reduce overtime and individual unfairness,

achieving shorter average waiting times often comes at the expense of increased indi-

vidual unfairness. Managerial Implications: Our results are useful for the design of

scheduling policies that strike a balance between efficiency and fairness in healthcare

delivery.
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1. Introduction
Appointment systems in outpatient clinics are a crucial component of healthcare access and have

attracted substantial attention from the operations management community. Researchers have devel-

oped a wide range of analytical and numerical methodologies to address the challenges inherent in

these systems, which stem from uncertainty, high demand relative to capacity, and the importance

of timely access to care. These efforts aim to efficiently balance patient wait times and provider

overtime while improving access and service quality (Ahmadi-Javid et al. 2017).
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Compounding these challenges is the persistent problem of no-shows in outpatient clinics. No-
shows not only disrupt clinical workflows but also exacerbate inefficiencies, straining already limited
resources. No-shows cost the U.S. healthcare system over $150 billion annually and cost individual
physicians an average of $200 per unused time slot (Forbes 2019). In response, overbooking and
various other appointment scheduling strategies have been developed to address inefficiencies
caused by no-shows (Ahmadi-Javid et al. 2017). Advances in machine learning, together with the
growing availability of data, have facilitated the development of more accurate no-show prediction
models (Alaeddini et al. 2011, Huang and Hanauer 2014, Liu et al. 2022), which can be applied to
optimize appointment scheduling and various other operations management strategies in healthcare.

However, relying on predicted no-show rates raises ethical concerns as it risks accelerating
existing disparities. Research provides ample evidence that no-show rates vary significantly between
racial and socioeconomic groups, with disadvantaged patients more likely to miss appointments due
to factors such as transportation problems, inflexible work schedules, and lack of childcare options
(Samuels et al. 2015, Dantas et al. 2018, Parsons et al. 2021). Predictive models that rely on patient
demographic information can perpetuate systemic biases, disproportionately disadvantaging those
already facing substantial barriers to care. For example, a case study by Murray et al. (2020) of
a predictive model developed by Epic Systems, Inc. identified potential explicit discrimination.
Models that include personal attributes as features, such as ethnicity, financial status, religion, and
body mass index, could lead to overbooking practices that systematically reduce access to care for
already marginalized individuals who are predicted to have higher no-show rates.

More broadly, healthcare delivery and outcomes in the United States are marred by stark dispar-
ities between different racial and socioeconomic groups. The annual National Healthcare Quality
and Disparities Reports, compiled by the Agency for Healthcare Research and Quality (2024) for
21 consecutive years, provide a comprehensive overview of trends in healthcare access and quality,
stating that there are racial and socioeconomic disparities in receiving timely appointments. Black
and Hispanic patients face significant barriers to timely access to primary care (Wisniewski and
Walker 2020), and clinic times are significantly longer for racial and ethnic minorities, people with
lower levels of education, and unemployed patients (Ray et al. 2015). These findings underscore
the ethical imperative to address these inequities, especially in healthcare, where timely access to
care can critically affect people’s well-being.

Our study investigates outpatient appointment scheduling, focusing on the critical interplay
between predictive analytics and equitable service delivery. Specifically, we examine the impli-
cations of using stratified no-show probability predictions in scheduling decisions. We focus on
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understanding the trade-offs between traditional operational performance measures, such as provider

overtime and average patient waiting time, and in-clinic service experience disparities.

Building on existing appointment scheduling literature, our study extends the scope by con-

sidering a comprehensive range of scheduling levers, including slot length design, overbooking

strategies, and patient sequencing. However, we deliberately limit our analysis to scheduling poli-

cies that are straightforward to implement in practice. This pragmatic focus reduces the parameter

search space while restricting attention to approaches that remain feasible for adoption in practice.

We evaluate the trade-offs between operational efficiency and fairness across a wide spectrum of

scheduling policies and system configurations. We critically reassess the role of stratified no-show

predictions in optimizing operational performance. A key contribution of our work is to challenge

the assumption that such stratification is essential for improvement. Our goal is to bridge the gap

between operational efficiency and equitable service delivery, contributing to the development of

more inclusive and effective scheduling frameworks.

We rely on both numerical and analytical methods. Given the inherent analytical complexity

of appointment scheduling, we first adopt a numerical approach to explore various trade-offs and

derive key managerial insights. This approach allows us to investigate a wide range of scenarios

and uncover nuanced patterns that are challenging to capture analytically. Then, to complement

our numerical findings and enhance generalizability, we substantiate key observations with the

theoretical analysis of a fluid model. In general, our results lead to a deeper understanding of the

intricate relationships between efficiency and fairness in scheduling. By highlighting the conditions

under which certain trade-offs emerge, our study offers valuable guidance to decision-makers in

healthcare and paves the way for designing more equitable and efficient systems.

The main contributions of our work can be summarized as follows.

First, we consider fairness as a performance indicator of appointment scheduling, going beyond

traditional operational metrics such as patient waiting time and provider overtime. We measure

fairness by quantifying the differences in patient waiting times for a given schedule. A schedule is

more fair when the patient waiting times are closer. We consider two measures of fairness, at the

individual and group levels. Individual unfairness captures the variability in waiting times between

all patients, and group unfairness captures the variability in average waiting times between patient

groups, where patient groups are defined based on their stratified show-up probability predictions.

By systematically analyzing trade-offs among various measures, we uncover the inherent tensions
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between operational efficiency and equitable access to care. Group unfairness can be mitigated sim-

ply by not relying on stratified show-up probability predictions when scheduling patients. However,

it is unclear how individual unfairness and operational efficiency are dependent on the schedule. A

key insight is that it is possible to simultaneously reduce overtime and individual unfairness. How-

ever, achieving shorter average waiting times often comes at the expense of increased individual

unfairness.

Second, we challenge the necessity of using stratified show-up probability predictions to achieve

operational improvements. Our findings demonstrate that with carefully designed scheduling strate-

gies, it is possible to maintain competitive operational performance without exacerbating group

unfairness. In particular, we find that scheduling policies that do not rely on stratified show-up

probability predictions (by randomly sequencing patients) tend to achieve superior performance,

that is, they efficiently balance operational and individual fairness objectives. This insight pro-

vides an alternative perspective for healthcare systems where predictive tools may be unavailable,

resource-intensive, or ethically controversial.

Finally, our framework is designed with practical implementation in mind, addressing pragmatic

considerations that are often overlooked in theoretical studies. We consider different scheduling

levers, including appointment slot length design, overbooking strategies, and patient sequencing.

Additionally, we evaluate system configurations across diverse scenarios, capturing the complexity

of real-world healthcare settings. These scenarios include systems of varying sizes (small and

large), differing levels of workload (moderately and heavily overloaded), variations in no-show

probabilities and patient group compositions, and both deterministic and stochastic service times.

The remainder of the paper is organized as follows. In Section 2, we provide a brief review of the

related literature. In Section 3, we provide details of the scheduling problem that we study, including

scheduling policies and performance metrics that we considered. In Section 4, we simulate the

system under different scheduling rules and parameter settings to study the trade-offs between

different performance metrics. In Section 5, we present a fluid-based approximation of the system

and present theoretical results that support the numerical findings of Section 4. Finally, in Section

6, we conclude, discuss modeling limitations, and propose future research directions. Technical

proofs and additional numerical results are provided in the Online Appendix.

2. Literature
Our research builds on a comprehensive body of literature, which we categorize into three main

areas: racial disparity in healthcare, patient no-show behaviors, and appointment scheduling.
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First, we discuss the literature that highlights the pervasive inequities experienced by racial and

ethnic minorities in healthcare, as well as the role of technology in either exacerbating or mitigat-

ing these disparities. Nelson (2002) and Hostetter and Klein (2018) show that ethnic and racial

minorities in the United States are less likely than white individuals to receive preventive healthcare

and are more likely to experience a lower overall quality of care, even when socioeconomic factors

such as income, neighborhood location, comorbidities, and health insurance are considered. More-

over, modern technologies serve as potent mechanisms for perpetuating racial inequality. Benjamin

(2016) argues that both unconscious and deliberate biases are embedded in technologies such as

artificial intelligence. Gianfrancesco et al. (2018) find that biases and deficiencies in the data used

by machine learning algorithms contribute to socioeconomic disparities in healthcare. Obermeyer

et al. (2019) provide a striking example, demonstrating how predictive models based on future

health costs disproportionately disadvantage sicker Black patients. To address this issue, they pro-

pose a race-unaware approach that focuses on predicting future health outcomes instead of costs,

thereby reducing bias. In advocating for a fairer use of machine learning, Rajkomar et al. (2018)

emphasize the importance of proactively designing systems to advance health equity. They argue

that incorporating principles of distributive justice into model design, deployment, and evaluation

is critical. Nevertheless, Murray et al. (2020) reveal that eliminating socioeconomic factors alone

does not resolve racial disparities. They show that other features of a patient’s previous history

remain strongly correlated with race, contributing to persistent inequities.

In the specific context of appointment scheduling, an important factor is patient no-show. Racial

disparities in no-show probabilities have been well documented. For example, Huang and Hanauer

(2014) report that African Americans, who represent 5.3% of their dataset, exhibit the lowest atten-

dance rates for general pediatric appointments. Similarly, Miller et al. (2015) investigate repeat

no show cases and find that younger, black and low-income patients face significant barriers to

accessing care. Similarly, Hamilton et al. (2002) confirm that patients from lower socioeconomic

backgrounds are less likely to keep their appointments, while Dantas et al. (2018) observe that

minority groups are consistently linked to higher rates of missed appointments. Kaplan-Lewis and

Percac-Lima (2013) demonstrate that black and Hispanic patients in underserved populations expe-

rience disproportionately high no-show rates. In the broader literature on resource allocation, it has

also been established that prioritizing fairness often comes at the expense of other performance

metrics (Bertsimas et al. 2011). In this paper, we critically reassess the need to utilize stratified pre-

dictive show-up probabilities to achieve improved operational efficiency. As highlighted above, such
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predictive models can, whether intentionally or unintentionally, correlate with patients’ racial and

socioeconomic backgrounds, raising significant concerns about potential inequities in healthcare

delivery.

A substantial body of research explores scheduling strategies that account for no-shows (e.g.,

Li et al. 2019, Samorani and LaGanga 2015, Zacharias and Pinedo 2014, Feldman et al. 2014,

Hassin and Mendel 2008). See also Cayirli and Veral (2003) and Gupta and Denton (2008) for

comprehensive surveys. Two common strategies in the literature to mitigate the adverse effects

of no-shows are overbooking and adjusting the length of appointment slots. Using single-server

queueing models, Liu and Ziya (2014) examine the optimal level of overbooking. LaGanga and

Lawrence (2012) provide numerical evidence supporting the effectiveness of overbooking in diverse

service environments and cost structures, and identify a well-performing front-loaded overbooking

pattern. Zacharias and Pinedo (2014) observe a similar pattern, particularly in scenarios where

overtime costs dominate. Armony et al. (2019) study both the slot length design and the overbooking

strategy. They show that overbooking at the end of the session asymptotically minimizes the

combined costs of customer waiting time and provider overtime in a large-population, overloaded

limit. Kong et al. (2013) formulate the scheduling problem as a convex conic optimization problem

with a tractable semidefinite relaxation. They find that when overbooking is necessary, assigning

these bookings at the beginning or end of the session is optimal. For appointment slot length

design, Wang (1993) presents numerical results that indicate that optimal appointment intervals for

homogeneous patients exhibit a dome-shaped pattern. This pattern features appointment intervals

that gradually increase toward the middle of the session and then decrease, assuming that service

times are independent, identically distributed, and exponential. Supporting evidence for this dome-

shaped pattern is also provided by Denton and Gupta (2003) and Robinson and Chen (2003).

Klassen and Yoogalingam (2009) extend this understanding by numerically demonstrating that, with

integer-valued appointment slots, the optimal scheduling pattern exhibits a plateau-dome structure.

When utilizing stratified or personalized patient information (e.g., show-up probabilities, service

times), there are different sequencing rules developed to optimize operational performance (Denton

et al. 2007). Wang (1999) studies a system in which patient service times follow exponential

distributions with varying rates and finds that sequencing patients in descending order of service

rates is optimal. Mak et al. (2015) investigate sequencing when the mean and variance of service

times are known. Their results demonstrate that, under certain conditions, following a smallest-

variance-first rule yields optimal outcomes. Due to the inherent complexity of these problems,
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relatively few studies look at multiple aspects of appointment scheduling: slot length design,

overbooking, and sequencing. Most existing research in this domain, including (Weiss 1990, Denton

et al. 2007), focuses on systems with only two patients, primarily to address the significant analytical

challenges involved. In contrast, our study considers all three dimensions of appointment scheduling

simultaneously. To maintain practical feasibility and reduce the computational search space, we

focus on policies that are easy to implement, e.g., policies with equal slot lengths and where

overbooking is restricted to the first and last slots.

Most of the appointment scheduling literature discussed above focuses on minimizing operational

performance costs, such as a weighted sum of patient waiting times, provider overtime, and idle

time. Very few studies focus on fairness metrics. A common observation is that, according to

current scheduling practice, patients scheduled later in a session tend to experience longer in-clinic

delays (Cayirli and Veral 2003, Kong et al. 2020, Qi 2017). Some measures have been proposed

to mitigate this unfairness. The paper closest to ours is the recent study by Samorani et al. (2022),

which is among the first to examine racial disparities when utilizing stratified show-up probabilities

for scheduling. They focus on a specific class of scheduling policies previously studied by Zacharias

and Pinedo (2014). Their findings reveal that these policies can result in substantial unfairness

between racial groups, prompting the authors to propose incorporating racial disparity into the

objective function when optimizing scheduling policies. In contrast, our study explores a broader

class of scheduling policies and demonstrates that, with careful optimization of slot length and

overbooking strategies, it is possible to achieve strong operational performance metrics without

compromising fairness. In addition, we investigate the trade-offs between different operational

performance metrics and fairness measures. For instance, we show that while there is often a trade-

off between average waiting times and individual fairness, improvements in overtime and individual

fairness tend to align.

3. Modeling Framework
In this section, we introduce our modeling framework and scheduling policies. We focus on poli-

cies that are practically relevant. Our analysis evaluates performance not only through standard

operational metrics, such as waiting time and overtime, but also by examining fairness, both at the

individual level and across different patient groups.

3.1. Problem Formulation

We consider an outpatient clinic in which patients may or may not attend their scheduled appoint-

ments. The scheduling period, which spans a total length 𝑇 , must accommodate Λ patients, indexed
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by 𝑖 = 1,2, ...,Λ. A scheduling policy specifies the start time for the appointment of each patient. Let

Δ𝑖 denote the scheduled interarrival time between the (𝑖−1)th and 𝑖th patients, with the assumption

that Δ𝑖 ≥ 0. In particular, the indexing of patients reflects the sequencing decision.

Appointment scheduling generally involves a two-stage planning process (Patrick and Aubin

2013, Demeulemeester et al. 2013, Mak et al. 2015). The first stage determines the number of

patients to assign to a fixed scheduling period. The second stage allocates various time slots to

individual patients. In this work, we explore varying levels of patient demand for a fixed scheduling

period and, for each system configuration, investigate how to allocate time slots to patients.

We assume that the patient population consists of two groups, 𝐿 and 𝐻, which are heterogeneous

in their show-up probabilities, denoted as 𝑝𝐿 and 𝑝𝐻 . We assume 𝑝𝐿 < 𝑝𝐻 so that 𝐿 patients are

less likely than 𝐻 patients to attend their scheduled appointments. Let Λ𝐿 ,Λ𝐻 be the numbers of

𝐿 and 𝐻 patients. Then, Λ = Λ𝐿 +Λ𝐻 . Let 𝛾 = Λ𝐿/Λ be the fraction of 𝐿 patients. We also define

𝑝 = 𝛾𝑝𝐿 + (1− 𝛾)𝑝𝐻 to be the average show-up probability of the patient population.

Let {𝐼𝑖 : 1 ≤ 𝑖 ≤ Λ} be a sequence of independent Bernoulli random variables with mean 𝑝𝑖 < 1,

indicating whether patient 𝑖 shows up or not. When a patient shows up, we assume that they are

punctual, i.e., they show up exactly at the scheduled appointment time. The provider serves patients

in ascending order of their indices, following a first-come, first-served (FCFS) policy. The service

times, denoted by {𝑆𝑖 : 1 ≤ 𝑖 ≤ Λ}, are independently and identically distributed with mean 1, and

are mutually independent of the show-up indicators, 𝐼𝑖’s. No service preemptions are allowed.

3.2. Preliminary Analysis

We denote by𝑊𝑖 the waiting time of patient 𝑖. The waiting time is the duration between the patient’s

arrival and the start of their service. The sequence {𝑊𝑖 : 𝑖 ≥ 0} forms a Lindley process, with the

initial conditions 𝑊0 = 0, 𝑆0 = 0, Δ1 = 0. For 𝑖 ≥ 1,

𝑊𝑖 = (𝑊𝑖−1 + 𝑆𝑖−1𝐼𝑖−1 −Δ𝑖)+. (1)

However, {𝑊𝑖 : 𝑖 ≥ 0} is not a typical Lindley process since the (𝑆𝑖−1𝐼𝑖−1 −Δ𝑖)’s are not identically

distributed. The indicators 𝐼𝑖−1 are determined by patient sequencing, for example, whether 𝐻

patients are scheduled before 𝐿 patients, and Δ𝑖’s are determined by the scheduling policy. For

example, Δ𝑖 can equal zero if the appointment slot is overbooked. Thus, analyzing the Lindley

process in (1), which is needed to characterize performance or derive the optimal scheduling policy,

can be prohibitively complex. Moreover, with heterogeneous patients, optimizing the appointment



Authors’ names not included for peer review
Article submitted to Manufacturing & Service Operations Management 9

sequence is crucial but often presents significant analytical challenges (Kong et al. 2016). This

complexity is further exacerbated by the interdependence between the slot length design and the

patient sequence, as determining the optimal slot length often requires extensive computations

(Denton and Gupta 2003, Gupta 2007). Although a handful of studies have addressed these chal-

lenges analytically, primarily leveraging robust optimization (e.g., Mak et al. 2015), there has been

no analytical work that simultaneously considers slot length design (determining the start times

of appointments), sequencing (deciding on the order of heterogeneous patients), and overbooking

(deciding on the number of patients per slot), as we do in this paper. Next, we present preliminary

results on how these decisions affect patient waiting times.

Proposition 1. For constant service time or exponential service time with mean 1, for each 𝑖,

there exists 𝛼𝑖 > 0, such that if Δ𝑖 ≥ 𝑝𝑖−1 +𝛼𝑖, then E[𝑊𝑖] ≤ E[𝑊𝑖−1]; otherwise, E[𝑊𝑖] > E[𝑊𝑖−1].

As a special case of Proposition 1, we note that if Δ𝑖 = 𝑝𝑖−1, then E[𝑊𝑖] ≥ E[𝑊𝑖−1]. This suggests

that setting the slot length equal to E[𝑆𝑖−1𝐼𝑖−1] = E[𝑆𝑖−1] E[𝐼𝑖−1] = 𝑝𝑖−1 results in patients scheduled

later during the scheduling period experiencing longer delays.

In Figure 1, we present a numerical example of expected patient waiting times under different

sequencing strategies: scheduling 𝐻 patients first (𝜋𝐻), scheduling 𝐿 patients first (𝜋𝐿), and random

sequencing (𝜋𝑅). We fix Δ𝑖 = 𝑝 +0.1, with 3 patients scheduled in the first slot, 2 patients scheduled

in the last slot, and exactly 1 patient scheduled in each of the remaining slots. Depending on the

sequencing rule, overbooked patients can be 𝐻 or 𝐿 patients, or randomly chosen between the

two. Figure 1 illustrates how the specific sequencing rule impacts waiting times. For example, the

blue dash-dot curve, corresponding to random sequencing (in this case, 𝛼𝑖 > 0.1 and 𝑝𝑖−1 = 𝑝,

that is, Δ𝑖 = 𝑝 + 0.1 < 𝑝𝑖−1 + 𝛼𝑖, for 𝑖 = 4, ...15), shows a steady increase in waiting times as the

scheduling position increases. In contrast, the solid orange curve, corresponding to scheduling 𝐿

patients first and the green dashed curve, corresponding to scheduling 𝐻 patients first, exhibit some

downward segments (since for those patients, Δ𝑖 = 𝑝+0.1 > 𝑝𝐿 +𝛼𝑖). Furthermore, overtime, which

is equal to the sum of the expected waiting time of the last patient in this example and 𝑝Λ, varies

between the sequencing rules, further illustrating the impact of the sequencing rule on overall

system performance.

3.3. Scheduling policies

We study a family of scheduling policies designed to efficiently balance provider overtime, patient

waiting times, and fairness. We focus on policies that are practical, i.e., easy to implement in real-

world settings. The scheduling policies are characterized by three key decisions: (1) Appointment
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Figure 1 Average patient wait times for different indices under different sequencing rules.

slot length: we focus on slots of equal duration to simplify implementation. (2) Patient allocation

per slot: overbooking is allowed only at the beginning or end of the schedule. (3) Patient sequence:

patients can be sequenced based on their show-up probabilities. Next, we provide more details

about each of these three key decisions.

3.3.1. Slot sizing and overbooking. Many studies have shown that optimal scheduling policies,

under various performance objectives, often exhibit a "dome-shaped" pattern in terms of the slot

length distribution (Denton and Gupta 2003, Robinson and Chen 2003, Wang 1993, Klassen and

Yoogalingam 2009). In this approach, patients scheduled in the middle of the period are assigned

longer slots, while those at the beginning or end are assigned shorter slots. Despite their theoretical

appeal, dome-shaped scheduling policies are rarely adopted in practice (Kuiper et al. 2021). This

is attributed to the analytical complexity of determining optimal slot lengths and the practical

challenges of implementing schedules with varying slot durations.

In this paper, we consider a simplified and more practical class of dome-shaped scheduling

policies. All slot lengths within the scheduling period, except the last, are set identically to (𝑝 + 𝜀),
for some constant 𝜀 ≥ 0. The last slot is set equal to (𝑇 mod (𝑝 + 𝜀)). Overbooking - assigning

multiple patients to the same time slot - is allowed only in the first and last slots, i.e., at times 0 and

𝑇 − (𝑇 mod (𝑝 + 𝜀)). Let 𝜅 ≥ 0 denote the number of patients who are overbooked at time 0, i.e.,

the total number of patients scheduled in the first slot is 1+ 𝜅. When all slots are fully occupied, any

remaining patients are scheduled in the last slot. Under the assumption that patients who do show

up are punctual, the interarrival times follow a plateau dome pattern (Klassen and Yoogalingam

2009). In particular, the interarrival times are zero for patients who are overbooked in the first

and last slots. That is, if 𝜅 > 0, Δ𝑖 = 0 for 𝑖 = 1, . . . ,1 + 𝜅; if Λ > ⌊𝑇/(𝑝 + 𝜀)⌋ + 𝜅 + 1, Δ𝑖 = 0 for
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𝑖 = ⌊𝑇/(𝑝 + 𝜀)⌋ + 𝜅 + 2, . . . ,Λ. For the remaining patients, the interarrival times are equal to 𝑝 + 𝜀,

i.e., Δ𝑖 = 𝑝 + 𝜀 for 2+ 𝜅 ≤ 𝑖 ≤ ⌊𝑇/(𝑝 + 𝜀)⌋ + 𝜅 + 1.

This class of plateau-dome policies is flexible and includes, as special cases, two scheduling

rules that have been shown to be optimal under specific conditions. The first scheduling rule is the

“L-shaped” front-loading schedule, which sets the slot length to 𝑝 + 𝜀 = E[𝑆𝑖] = 1, i.e., 𝜀 = 1− 𝑝,

and only allows overbooking at time 0. With homogeneous patients, when the slot lengths are fixed

at 1, front loading has been shown to be optimal when the overtime cost dominates the cost of

patient waiting (LaGanga and Lawrence 2012, Zacharias and Pinedo 2014). The second scheduling

rule sets the slot length to 𝑝, i.e., 𝜀 = 0, and only allows overbooking in the last slot. Armony et al.

(2019) shows that this scheduling policy asymptotically minimizes the sum of customer waiting

times and provider overtime costs in a large population, overloaded limit.

In numerical experiments, we relax the restriction of overbooking to the beginning and end of

the scheduling period, i.e., overbooking is allowed at any intermediate slot. Our results show that

restricting the scheduling design to this special class of plateau-dome policies leads to only minimal

performance loss. Specifically, the suboptimality gaps are less than 5% in most scenarios when

considering weighted sum optimization problems and constrained optimization problems across

different performance metrics (see online Appendix D for details). By restricting the design space to

this special class of plateau-dome policies, near-optimal solutions can be achieved with significantly

reduced computational complexity, which highlights the practicality of our framework.

3.3.2. Patient sequencing. We consider patient sequencing rules that leverage stratified show-

up probabilities. Zacharias and Pinedo (2014) demonstrate that, under a front-loading schedule,

scheduling patients with low show-up probabilities first minimizes the expected total waiting time.

Wang (1999) shows that the optimal patient sequence is in descending order of service rates,

assuming exponentially distributed service times. Another stream of literature focuses on the

smallest-variance-first sequencing rules (Mak et al. 2015, Kemper et al. 2014). In our setting, under

the assumption that service times are independent and identically distributed, the smallest-variance-

first sequence is determined by the show-up probabilities. For example, when the service times are

constant and 𝑝𝐻 > 𝑝𝐿 > 0.5, the smallest-variance-first sequence would schedule 𝐻 patients first.

Smallest-variance-first sequencing is not always optimal. For example, when physician overtime is

highly costly, the largest-variance-first sequence might have better performance (Qi 2017).

Motivated by these findings, we focus on the following three sequencing rules. (1) Random

sequencing (𝜋𝑅): Patients are scheduled in random order, ignoring stratified show-up probability
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predictions. (2) Low-first sequencing (𝜋𝐿): Patients with low show-up probabilities are scheduled

before those with high show-up probabilities. (3) High-first sequencing (𝜋𝐻): Patients with high

show-up probabilities are scheduled before those with low show-up probabilities.

It is important to note that the use of stratified show-up probabilities in sequencing decisions

can raise concerns about fairness. Specifically, prioritizing patients based on their likelihood of

showing up could inadvertently disadvantage certain groups, particularly if show-up probabilities

are correlated with socioeconomic factors, access to transportation, or other systemic barriers.

This approach may result in patient groups experiencing longer wait times, exacerbating existing

inequities. Next, we define our performance metrics, including both operational and fairness metrics.

3.4. Performance Metrics

We let 0/0 = 0 in what follows. We also let L and H denote the sets of 𝐻 patients and 𝐿 patients.

• The average waiting time over the entire population, E
[
𝑊

]
, where

𝑊 =

∑Λ
𝑖=1𝑊𝑖 𝐼𝑖∑Λ
𝑖=1 𝐼𝑖

.

• The average waiting times for groups L and H, E
[
𝑊 𝐿

]
and E

[
𝑊𝐻

]
, where

𝑊 𝐿 =

∑
𝑖∈L𝑊𝑖 𝐼𝑖∑
𝑖∈L 𝐼𝑖

and 𝑊𝐻 =

∑
𝑖∈H𝑊𝑖 𝐼𝑖∑
𝑖∈H 𝐼𝑖

.

• The group unfairness, 𝐺𝐹, which is defined as

𝐺𝐹 =

���E[𝑊 𝐿] −E[𝑊𝐻]
���

E[𝑊]
.

The measure 𝐺𝐹 quantifies the disparity in waiting times between patient groups L and H,

relative to the average waiting time. A higher value of 𝐺𝐹 indicates greater unfairness.

• The individual unfairness, 𝐼𝐹, which is defined as

𝐼𝐹 =
E[max𝑘=1,...,Λ𝑊𝑘 𝐼𝑘 −min𝑘=1,...,Λ𝑊𝑘 𝐼𝑘 ]

E[𝑊]
=
E[max𝑘=1,...,Λ𝑊𝑘 𝐼𝑘 ]

E[𝑊]
.

Note that 𝑊1 = 0 because the first scheduled patient does not wait. Thus, min𝑘=1,...,Λ𝑊𝑘 𝐼𝑘 = 0.

The measure 𝐼𝐹 quantifies the relative range of the waiting times, with a higher value indicating

greater unfairness. This is a commonly used unfairness metric in the literature (Xinying Chen

and Hooker 2023, Cowell 2011, Wagstaff et al. 1991).
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• The provider overtime, E[𝑉], where

𝑉 =

(
Λ∑︁
𝑘=1

Δ𝑘 +𝑊Λ + 𝑆Λ𝐼Λ −𝑇

)+
.

Note that
∑Λ

𝑘=1 Δ𝑘 is the time when patientΛ is scheduled to show up. The variable𝑉 quantifies

the additional time that the provider has to work beyond 𝑇 .

Among the performance metrics listed above, E[𝑊] and E[𝑉] are commonly studied in the

appointment scheduling literature and often serve as key criteria to evaluate scheduling efficiency

and operational performance (Begen et al. 2012, Feldman et al. 2014). These metrics address

critical stakeholder conflicts: patient wait time is widely used to evaluate patient experience and

satisfaction, whereas overtime reflects the provider’s working experience and system utilization.

In contrast, 𝐺𝐹 and 𝐼𝐹, which measure unfairness, have been discussed in Qi (2017), Turkcan

et al. (2011), but remain relatively understudied. When a scheduling policy consistently favors one

group of patients over another, the less favored group may experience longer waiting times, reduced

access to timely care, and lower overall satisfaction. This issue becomes especially pressing when

disparities align with larger societal inequalities, such as socioeconomic status or clinical needs,

making it a topic of increasing importance in the pursuit of equitable healthcare delivery (Samorani

et al. 2022, Mackenbach et al. 2008). Group fairness quantifies inequities between patient groups,

while individual unfairness focuses on disparities at the level of individual patients, emphasizing

the need to minimize inequities in waiting times and access to care between individuals (Wagstaff

et al. 1991, Schlotheuber and Hosseinpoor 2022).

4. Simulation Study
In this section, we describe the results of a numerical study exploring different trade-offs in

appointment scheduling. In Section 4.1, we explore the trade-offs between different performance

measures. In Section 4.2, we explore the optimal scheduling policy under different objectives.

Each set of performance measures is estimated by averaging over 104 replications. We explore

various system configurations, including different lengths of the scheduling period (𝑇 = 10 and

𝑇 = 30) and different panel sizes (Λ = 1.2𝑇/𝑝,1.5𝑇/𝑝, and 1.8𝑇/𝑝). We focus on overloaded

systems where effective scheduling policies are especially important. We set (𝑝𝐿 , 𝑝𝐻) = (0.6,0.8)
following the estimates from Samorani et al. (2022). We also consider (𝑝𝐿 , 𝑝𝐻) = (0.3,0.7) and

(𝑝𝐿 , 𝑝𝐻) = (0.2,0.3). We let 𝛾 = 0.25,0.5,0.75. We consider both exponentially distributed and

deterministic service times. In total, we experimented with 108 different system configurations.
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In terms of scheduling policies, we consider different slot lengths (𝜀 = 0,0.1, ...,1− 𝑝), different

numbers of overbooked patients in the first slot (𝜅 = 0,1, . . . , ⌊Λ − 𝑇/(𝑝 + 𝜀)⌋), and different

sequencing rules (𝜋𝑅, 𝜋𝐿 , and 𝜋𝐻). We define 𝜅max(𝜀) = ⌊Λ − 𝑇/(𝑝 + 𝜀)⌋ as the maximum level

of overbooking possible and note that 𝜅𝑚𝑎𝑥 (𝜀) − 𝜅 patients are overbooked in the last slot. In total,

our study evaluates 99,780 unique systems, ensuring that the findings are not restricted to a narrow

set of assumptions and demonstrating the robustness of our results under various conditions. By

systematically varying these parameters, we provide a characterization of fairness and operational

trade-offs across a broad spectrum of operational scenarios, including relatively small and large

systems, moderately and heavily overloaded systems, high and low no-show probabilities, different

partitions of patient groups, deterministic and random service times, under various scheduling

policies.

4.1. Trade-offs Among Different Performance Metrics

We begin by studying performance under different sequencing rules. We use a superscript to mark

the dependence of a performance measure on the sequencing rule at hand, e.g., E[𝑊𝜋𝑅 ], E[𝑉𝜋𝑅 ],
𝐼𝐹𝜋𝑅 , and 𝐺𝐹𝜋𝑅 correspond to 𝜋𝑅. Although 𝜋𝑅, which does not take advantage of the stratified

show-up probability, achieves optimal group fairness, it is not clear how much improvement in

operational performance can be gained by using this stratified show-up probability.

We explore this in Figure 2, where we compare the four performance metrics, E[𝑊], E[𝑉], 𝐼𝐹,

and 𝐺𝐹, under the three sequencing rules, 𝜋𝑅, 𝜋𝐻 , and 𝜋𝐻 . In this figure, we use exponentially

distributed service times, and set 𝑇 = 10 and Λ= 17. We fix 𝜀 = 0.2 while varying 𝜅 from 0 to 5 on

the horizontal axis. We observe from the figure that for fixed 𝜀 and 𝜅, compared to 𝜋𝑅, 𝜋𝐻 tends

to improve overtime and individual fairness, while 𝜋𝐿 tends to improve the waiting time. We make

similar observations for other system configurations (see Appendix A for additional numerical

results). We formally summarize our observations as follows:

Observation 1. For fixed 𝜅 and 𝜀, the overtime follows the ranking

E [𝑉𝜋𝐻 ] ≤ E [𝑉𝜋𝑅 ] ≤ E [𝑉𝜋𝐿 ] .

For fixed 𝜀, there exists 𝜅𝑤 such that for all 𝜅 ≥ 𝜅𝑤, the waiting time averages are ranked as

E
[
𝑊

𝜋𝐿
]
≤ E

[
𝑊

𝜋𝑅
]
≤ E

[
𝑊

𝜋𝐻
]
.

Additionally, for fixed 𝜀, there exist thresholds 𝜅
𝑓

and 𝜅 𝑓 such that for 𝜅
𝑓
≤ 𝜅 ≤ 𝜅 𝑓 , the individual

unfairness are ranked as

𝐼𝐹𝜋𝐻 ≤ 𝐼𝐹𝜋𝑅 ≤ 𝐼𝐹𝜋𝐿 .
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Figure 2 System performance across all three sequencing rules for varying 𝜅 values.

For example, when 𝜀 = 0,0.1, 𝜅𝑤 = 1; when 𝜀 = 0.2, 𝜅𝑤 = 2; and when 𝜀 = 0.3, 𝜅𝑤 = 3. Also,

when 𝜀 = 0,0.1,0.2, 𝜅
𝑓
= 0 and 𝜅 𝑓 = 𝜅max(𝜀); when 𝜀 = 0.3, 𝜅

𝑓
= 1 and 𝜅 𝑓 = 𝜅max(0.3).

The intuition behind Observation 1 is as follows. Under 𝜋𝐻 , high show-up probability patients

are scheduled first. In this case, the backlog caused by overbooked patients at the beginning of the

scheduling period clears slowly, leading to a greater propagation of delays throughout the scheduling

period. Thus, this approach reduces idle time during the scheduling period, which in turn reduces

overtime. In addition, 𝜋𝐻 reduces individual unfairness by balancing patient delays throughout the

scheduling period. In contrast, under 𝜋𝐿 , patients with low show-up probability are scheduled first.

Although this approach increases overtime due to more idling when early patients do not show up,

it also helps reduce overall waiting times by clearing the initial backlog more quickly.
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The contrasting trends between overtime and waiting time underscore a fundamental trade-off in

appointment scheduling. Overtime primarily concerns the provider, as it affects both the working

experience and resource management. In contrast, waiting time is critical from the patient’s point

of view, as prolonged waits can negatively impact the overall patient experience and quality of care.

Balancing these two objectives –minimizing overtime for the provider while ensuring reasonable

patient wait times – poses a significant challenge, since scheduling policies tend to prioritize one

objective at the expense of the other.

Having compared the sequencing rules, we now focus on performance under 𝜋𝑅, and study the

effects of other parameters of the scheduling policy. In Figure 3, we plot individual fairness, 𝐼𝐹,

as a function of the expected overtime, E[𝑉], and the expected average waiting time, E[𝑊]. We

vary 𝜅 and 𝜀. In this figure, we set 𝑇 = 10, Λ = 21, and 𝑆𝑖 = 1. Each labeled dot (e.g., ‘R𝑥_𝑦’)

in the figure represents a specific scheduling policy, where ‘R’ indicates the 𝜋𝑅 sequencing rule,

𝜅 = 𝑥, and 𝜀 = 𝑦/100, e.g., “R2_20” corresponds to the 𝜋𝑅 policy with 𝜅 = 2 and 𝜀 = 0.2. Recall

that 𝜅𝑚𝑎𝑥 (𝜀) − 𝜅 patients are overbooked in the last slot, so increasing 𝜅 amounts to decreased

overbooking in the last slot. In what follows, we also use the superscript to mark the dependence of

the performance metrics on the scheduling policy, e.g., 𝑉𝑅𝜀,𝜅 and 𝑊
𝑅𝜀,𝜅 .

As 𝜅 increases, scheduling becomes more front-loaded, with less overbooking towards the end

of the session. We observe from the figure that this shift typically results in greater congestion

early in the session, leading to increased average waiting times but reduced overtime. Interestingly,

individual unfairness generally trends in the same direction as overtime, but in the opposite direction

of the average waiting time. We make similar observations in other system configurations (see

Appendix A for additional numerical results), and formally summarize our observations as follows:

Observation 2. For fixed 𝜀 ≥ 0, there exists 𝜅0, such that for 𝜅2 ≥ 𝜅1 ≥ 𝜅0, the overtime, average

waiting time, and individual fairness are ranked as:

E
[
𝑉𝑅𝜀,𝜅1

]
≥ E

[
𝑉𝑅𝜀,𝜅2

]
,

E
[
𝑊

𝑅𝜀,𝜅1
]
≤ E

[
𝑊

𝑅𝜀,𝜅2
]
,

𝐼𝐹𝑅𝜀,𝜅1 ≥ 𝐼𝐹𝑅𝜀,𝜅2 .

In addition, individual unfairness is a convex function of the waiting time.

For example, when 𝜀 = 0, 𝜅0 = 0 as Figure 3(a)(b) show and when 𝜀 = 0.2, 𝜅0 = 1 as Figure

3(c)(d) show. Since individual unfairness is a convex function of the waiting time, indicating that in
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Figure 3 Relationships between individual unfairness, overtime, and wait time, for 𝜋𝑅 under different 𝜅 values.

systems with relatively short waiting times, achieving further reductions in waiting time may come

at the expense of a substantial increase in individual unfairness.

The intuition behind Observation 2 is as follows. Patients typically experience the longest waiting

times toward the end of the session. When overtime is high, e.g., as 𝜅 decreases so that there is

more overbooking in the last slot, waiting times for patients served during the overtime period also

increase. This results in greater variability in individual waiting times and, consequently, greater

individual unfairness. On the other hand, as 𝜅 increases, the average waiting time can increase due

to the substantial backlog earlier in the session.

One caveat to the relationship between individual unfairness and average waiting time is that

both can increase as 𝜅 decreases when 𝜅 is very small, e.g., for 𝜅 = 0 in Figure 3(d). This occurs

because, with minimal overbooking at the beginning of the scheduling period and, consequently,
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more overbooking in the last slot, the waiting times of patients seen during overtime can be so large

that they disproportionately affect the average waiting time.

Finally, we study individual fairness as a function of overtime and waiting time, for different

scheduling policies. In Figure 4, we present one such example in which we also marked the

corresponding Pareto frontiers. Based on this figure and the numerical results of many other

system configurations (see Appendix A for additional numerical results), we make the following

observation.

Observation 3. Random sequencing can effectively balance individual unfairness with waiting

time and overtime. In particular, there are points corresponding to 𝜋𝑅 that lie on or near the

efficiency frontier.

Consistent with Observation 2, the efficiency frontier demonstrates that reduced overtime is

typically associated with decreased individual unfairness, while shorter average waiting times often

result in increased individual unfairness. In other words, it is possible to simultaneously reduce

overtime and individual unfairness. However, achieving shorter average waiting times often comes

at the expense of increased individual unfairness. Thus, a provider can simultaneously minimize

overtime and individual unfairness, but a trade-off must be made between fairness and average

waiting time. This trade-off becomes particularly important when patient satisfaction is a key

priority. If the primary goal is to minimize individual unfairness, that is, ensuring that no patient

waits significantly longer than others, then patients may need to accept generally longer waiting

times, on average. However, if the objective is to reduce the average waiting time, individual

unfairness can increase, as some patients will experience disproportionately longer waits.

Observations 1, 2, and 3 provide valuable insights into navigating various trade-offs, and can be

useful in designing scheduling policies that strike the desired balance between overtime, average

waiting time, and individual fairness. Furthermore, it should be emphasized that individual unfair-

ness, overtime, and average waiting times can be effectively balanced without sacrificing group

fairness. We further illustrate this point through some case studies in the next subsection.

4.2. Case Studies

In this section, we present case studies to explore optimal scheduling rules in various scenarios. Since

we have multiple objectives - minimizing waiting time, reducing overtime, and ensuring fairness

- we consider two approaches: (a) assigning different weights to different performance metrics

and optimizing the resulting weighted sum and (b) optimizing a single performance metric while
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Figure 4 Pareto frontier of trade-offs between overtime, wait time, and fairness across the different sequencing

rules.

treating the others as constraints. Through these analyses, our goal is to improve our understanding

of the optimal policy in practical contexts, providing actionable strategies and managerial insights.

We begin with approach (a). For each of 108 system configurations (𝑇,Λ, 𝑝𝐿 , 𝑝𝐻 , 𝛾, 𝑆𝑖), we

fix the weight for the average waiting time at 1, i.e., 𝑤𝑤 = 1, while varying the weights for the

average overtime, 𝑤0, individual fairness, 𝑤𝑖 𝑓 , and group fairness, 𝑤𝑔 𝑓 . Specifically, we set 𝑤𝑜 ∈
{0.1,0.5,1,2,10} and 𝑤𝑖 𝑓 , 𝑤𝑔 𝑓 ∈ {0,2,10}. The corresponding optimization problem is given by:

Φ= min
(
𝑤𝑤 E

[
𝑊

]
+𝑤𝑜 E[𝑉] +𝑤𝑖 𝑓 𝐼𝐹 +𝑤𝑔 𝑓𝐺𝐹

)
. (2)

In approach (b), we minimize the average waiting time while imposing constraints on overtime

and fairness. Specifically, we consider the following constrained optimization problem:

min E
[
𝑊

]
,

s.t. E[𝑉] ≤ 𝑐𝑜, E[𝐼𝐹] ≤ 𝑐𝑖 𝑓 , and E[𝐺𝐹] ≤ 𝑐𝑔 𝑓 ,

(3)

where 𝑐𝑜, 𝑐𝑖 𝑓 , and 𝑐𝑔 𝑓 are nonnegative parameters. We vary the values of these constants by setting

them equal to numerical estimates of the 25th, 50th, and 75th percentiles, and the maximum of the

corresponding performance metrics calculated across all simulated policies.

For the problems defined by (2) and (3) with different weights or constraints, and for various

system configurations (𝑇,Λ, 𝑝𝐿 , 𝑝𝐻 , 𝛾, 𝑆𝑖), we solve 11,772 problem scenarios in total. To search

for the optimal scheduling policies for each problem scenario, we consider 𝜀 = 0,0.1, ...,1− 𝑝 with

the corresponding values of 𝜅 ∈ {0, . . . , 𝜅max(𝜀)}, and the three sequencing rules: 𝜋𝑅, 𝜋𝐿 , and 𝜋𝐻 .
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Figure 5 Histogram of optimality gap for the best performing 𝜋𝑅 policies across all scenarios.

In each scenario, we find the top 10 best-performing policies, which all perform nearly optimally,

with objective values differing only marginally. Within the set of top-performing policies for a

given system configuration and problem formulation, the values of 𝜀 and the sequencing rule may

vary, while the values of 𝜅 remain similar; see details in Appendix A.

A key observation is that random sequencing policies 𝜋𝑅 consistently appear among the top

performing policies. We also report the best performing 𝜋𝑅 policies, along with the percentage

optimality gap compared to the overall optimal policy (see some examples in Table 1 in Appendix

A). In Figure 5, we plot the histogram of the distribution of the percentage optimality gaps for

the best performing 𝜋𝑅 policies across 11,772 problem scenarios. We see that 𝜋𝑅 policies perform

optimally in 71% scenarios and, in most cases, 𝜋𝑅 policies are either optimal or near-optimal with

a sub-optimality gap of less than 5%. Exceptions occur in scenarios where the weights are heavily

skewed toward a single performance metric, favoring policies with 𝜋𝐻 or 𝜋𝐿 sequencing.

We can glean a key insight based on our numerical study: It is in general not necessary to rely

on stratified show-up predictions to achieve optimal or near-optimal performance. By appropriately

adjusting the scheduling structure design, specifically through 𝜅 (overbooking at time 0) and 𝜀 (slot

length adjustment), one can effectively balance efficiency and individual fairness while leveraging

only population-level information.

In addition, for every problem defined by equations (2) and (3), we report the average values of

𝜅 in all system configurations among the top 10 performing policies. The results are visualized in

the heat map presented in Figure 6. The heat map reveals a clear trend: As the weights assigned

to overtime and unfairness increase, or when constraints (imposed on overtime and unfairness)

become more restrictive, the average value of 𝜅 increases. This suggests that when greater emphasis

is placed on reducing overtime and unfairness, it becomes optimal to schedule more patients at

the beginning of the session. This behavior aligns with the underlying trade-offs in balancing

performance metrics discussed in Observation 2.
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Figure 6 Heat map of average 𝜅 of best performing policies across all scenarios.

5. Fluid Analysis
To provide theoretical support to the findings of the numerical experiments, this section presents

analyses based on a deterministic fluid approximation of the problem. Our objective is to deepen

our understanding of the key trade-offs between different performance metrics.

The fluid approximation relies on two key relaxations to simplify the analysis. First, all random

quantities are treated as deterministic, i.e., we replace the random service duration and the indicator

of whether a patient shows up with their corresponding average values. Second, we assume that

fluid processes are continuous in time; e.g., arriving patients are treated as continuous quanta of

fluid that leave the system continuously (provided that there is remaining fluid). In Section 5.4, we

illustrate that the fluid approximation is most accurate when 𝑇 is large relative to the service time.

5.1. The Fluid Model

Consistent with the scheduling design assumed in Section 3, the fluid model restricts overbooking

to times 0 and 𝑇 . With a slight abuse of notation, we continue to use 𝜅 to denote the amount of

overbooking at time 0 (which is equivalent to the amount booked in the fluid model). We define

the patient scheduled arrival rate as 1/(𝑝 + 𝜀), where we require 𝜀 ∈ [0,1− 𝑝]. We assume that the

system is overloaded and that, the overbooking at a specific time point (0 or 𝑇) belongs to the same

patient group. We also require that the amount of overbooking at time 0 does not exceed the total

amount that is required to be overbooked. We formalize these assumptions in Assumption 1.
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Assumption 1. In the fluid model, we assume:

1. Show-up probabilities: 𝑝𝐿 < 𝑝𝐻 < 1.

2. Patient population size: 𝑇 < Λ𝐿 𝑝𝐿 +Λ𝐻 𝑝, Λ𝐿 < 𝑇 , Λ𝐻 < 𝑇 .

3. Slot length and overbooking: 0 ≤ 𝜀 ≤ 1− 𝑝. For any fixed 𝜀 ≥ 0, 𝜅 ≤ Λ−𝑇/(𝑝 + 𝜀).

We use lowercase letters to represent fluid performance measures. That is, for a sequencing rule

𝑗 ∈ {𝜋𝑅, 𝜋𝐿 , 𝜋𝐻}, we let 𝑣 𝑗 , 𝑤̄ 𝑗 , if 𝑗 , and gf 𝑗 denote overtime, waiting time, individual and group

unfairness, respectively. Let 𝑥 𝑗 (𝑡) denote the fluid level of patients in the system at time 𝑡.

For 𝜋𝑅, 𝑥𝜋𝑅 (𝑡) at times 0 and 𝑇 are given by 𝑥𝜋𝑅 (0) = 𝜅𝑝 and 𝑥𝜋𝑅 (𝑇) = 𝑥𝜋𝑅 (𝑇−) + (Λ−𝑇/(𝑝 +
𝜀) − 𝜅)𝑝. For 𝑡 ∈ (0,𝑇) and 𝑡 ∈ (𝑇,𝑇 +Λ), 𝑥𝜋𝑅 (𝑡) ≥ 0 evolves according to

𝑑𝑥𝜋𝑅 (𝑡)
𝑑𝑡

=

(
𝑝

𝑝 + 𝜀 − 1
)
𝟙{𝑡 < 𝑇} − 𝟙{𝑡 > 𝑇} + 𝑙𝜋𝑅 (𝑡),

where 𝑙𝜋𝑅 (0) = 0, 𝑑𝑙𝜋𝑅 (𝑡) ≥ 0, and
∫ 𝑇+Λ

0 𝑥𝜋𝑅 (𝑡)𝑑𝑙𝜋𝑅 (𝑡) = 0. Note that the fluid continuously arrives

at a constant rate 𝑝/(𝑝+𝜀) on (0,𝑇), and is served at rate 1 if the system is not empty. (𝑥𝜋𝑅 (𝑡), 𝑙𝜋𝑅 (𝑡))
on (0,𝑇) and (𝑇,𝑇 +Λ) is a Skorohold problem.

For 𝜋𝐿 , we have 𝑥𝜋𝐿 (0) = 𝜅𝑝𝐿 and 𝑥𝜋𝐿 (𝑇) = 𝑥𝜋𝐿 (𝑇−) + (Λ −𝑇/(𝑝 + 𝜀) − 𝜅)𝑝𝐻 since 𝜅 fluid of

type 𝐿 is scheduled at time 0, and the remaining (Λ−𝑇/(𝑝 + 𝜀) − 𝜅) fluid of type 𝐻 is scheduled

at time 𝑇 . For 𝑡 ∈ (0,𝑇) and 𝑡 ∈ (𝑇,𝑇 +Λ), 𝑥𝜋𝐿 (𝑡) ≥ 0 evolves according to

𝑑𝑥𝜋𝐿 (𝑡)
𝑑𝑡

=

(
𝑝𝐿

𝑝 + 𝜀 − 1
)
𝟙{𝑡 ≤ (Λ𝐿 − 𝜅) (𝑝 + 𝜀)}

+
(
𝑝𝐻

𝑝 + 𝜀 − 1
)
𝟙{(Λ𝐿 − 𝜅) (𝑝 + 𝜀) < 𝑡 < 𝑇} − 𝟙{𝑡 > 𝑇} + 𝑙𝜋𝐿 (𝑡),

where 𝑙𝜋𝐿 (0) = 0, 𝑑𝑙𝜋𝐿 (𝑡) ≥ 0, and
∫ 𝑇+Λ

0 𝑥𝜋𝐿 (𝑡)𝑑𝑙𝜋𝐿 (𝑡) = 0. Note that 𝜅 fluid of type 𝐿 is overbooked

at time 0 and the rest of type 𝐿 shows up continuously at a rate 𝑝𝐿/(𝑝+𝜀) until time (Λ𝐿− 𝜅) (𝑝+𝜀).
Thereafter, fluid of type 𝐻 is scheduled.

Similarly to 𝜋𝐿 , for 𝜋𝐻 we have 𝑥𝜋𝐻 (0) = 𝜅𝑝𝐻 and 𝑥𝜋𝐻 (𝑇) = 𝑥𝜋𝐿 (𝑇−) + (Λ−𝑇/(𝑝 + 𝜀) − 𝜅)𝑝𝐿 .

For 𝑡 ∈ (0,𝑇) and 𝑡 ∈ (𝑇,𝑇 +Λ), 𝑥𝜋𝐻 (𝑡) ≥ 0 and evolves according to

𝑑𝑥𝜋𝐻 (𝑡)
𝑑𝑡

=

(
𝑝𝐻

𝑝 + 𝜀 − 1
)
𝟙{𝑡 ≤ (Λ𝐻 − 𝜅) (𝑝 + 𝜀)}

+
(

𝑝𝐿

𝑝 + 𝜀 − 1
)
𝟙{(Λ𝐻 − 𝜅) (𝑝 + 𝜀) < 𝑡 < 𝑇} − 𝟙{𝑡 > 𝑇} + 𝑙𝜋𝐻 (𝑡),

where 𝑙𝜋𝐻 (0) = 0, 𝑑𝑙𝜋𝐻 (𝑡) ≥ 0, and
∫ 𝑇+Λ

0 𝑥𝜋𝐻 (𝑡)𝑑𝑙𝜋𝐻 (𝑡) = 0.
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We can derive closed-form characterizations of 𝑥 𝑗 (𝑡)’s in a relatively straightforward manner.

For example,

𝑥𝜋𝑅 (𝑡) =


(
𝜅𝑝 − 𝜀

𝑝+𝜀 𝑡
)+

, if 0 ≤ 𝑡 < 𝑇,((
𝜅𝑝 − 𝜀

𝑝+𝜀𝑇
)+

+ (Λ−𝑇/(𝑝 + 𝜀) − 𝜅)𝑝 − (𝑡 −𝑇)
)+

, if 𝑡 ≥ 𝑇.

(4)

In Appendix B, we provide the explicit expressions for 𝑥𝜋𝐿 and 𝑥𝜋𝐻 .

Given 𝑥 𝑗 (𝑡), we have the following expressions for the various fluid performance measures:

𝑣 𝑗 = 𝑥 𝑗 (𝑇), 𝑤 𝑗 =
1
Λ𝑝

∫ 𝑇+Λ

0
𝑥 𝑗 (𝑡)𝑑𝑡,

if 𝑗 =
max0≤𝑡≤𝑇+Λ 𝑥 𝑗 (𝑡)

𝑤 𝑗
, and gf 𝑗 =

���𝑤 𝑗

𝐿
−𝑤

𝑗

𝐻

���
𝑤 𝑗

,

where

𝑤
𝜋𝑅
𝐿

=
1

Λ𝐿 𝑝𝐿

∫ 𝑇+Λ

0

Λ𝐿 𝑝𝐿

Λ𝑝
𝑥𝜋𝑅 (𝑡)𝑑𝑡 = 1

Λ𝑝

∫ 𝑇+Λ

0
𝑥𝜋𝑅 (𝑡)𝑑𝑡 = 𝑤

𝜋𝑅
𝐻
,

𝑤
𝜋𝐿
𝐿

=
1

Λ𝐿 𝑝𝐿

∫ (Λ𝐿−𝜅) (𝑝+𝜀)

0
𝑥𝜋𝐿 (𝑡)𝑑𝑡, 𝑤

𝜋𝐿
𝐻

=
1

Λ𝐻 𝑝𝐻

∫ 𝑇+Λ

(Λ𝐿−𝜅) (𝑝+𝜀)
𝑥𝜋𝐿 (𝑡)𝑑𝑡,

and

𝑤
𝜋𝐻
𝐿

=
1

Λ𝐿 𝑝𝐿

∫ 𝑇+Λ

(Λ𝐻−𝜅) (𝑝+𝜀)
𝑥𝜋𝐻 (𝑡)𝑑𝑡, 𝑤

𝜋𝐻
𝐻

=
1

Λ𝐻 𝑝𝐻

∫ (Λ𝐻−𝜅) (𝑝+𝜀)

0
𝑥𝜋𝐻 (𝑡)𝑑𝑡.

5.2. Performance Comparison With and Without Stratified Show-up Probabilities

In this section, we present analytical results comparing the performance measures - overtime,

waiting time, and individual unfairness - across different sequencing rules. Recall that gf𝜋𝑅 = 0

is minimal since 𝑤
𝜋𝑅
𝐿

= 𝑤
𝜋𝑅
𝐻

. However, relying on stratified show-up probabilities, with 𝜋𝐿 and

𝜋𝐻 , may improve other performance metrics. Let 𝜅𝜀 = Λ − 𝑇/(𝑝 + 𝜀) be the maximum level of

overbooking at time zero, for a given 𝜀 ≥ 0, since we do not allow for idle slots before 𝑇 . Because

𝑣 𝑗 depends on 𝜅, with a slight abuse of notation, we write 𝑣 𝑗 (𝜅) to treat it explicitly as a function

of 𝜅.

Proposition 2. For the fluid scheduling problem, under Assumption 1,

1. For any fixed 𝜀 ≥ 0 and 𝜅 ∈ [0, 𝜅𝜀], 𝑣𝜋𝐻 ≤ 𝑣𝜋𝑅 ≤ 𝑣𝜋𝐿 .

2. For any fixed 𝜀 ≥ 0, there exist 𝜅1, 𝜅2 ∈ [0, 𝜅𝜀), such that for any 𝜅 ∈ [𝜅1, 𝜅𝜀], 𝑤̄𝜋𝑅 < 𝑤̄𝜋𝐻 , and

for any 𝜅 ∈ [𝜅2, 𝜅𝜀], 𝑤̄𝜋𝐿 < 𝑤̄𝜋𝑅 .

3. For any fixed 𝜀 ≥ 0, define 𝛿𝐻 , 𝛿𝐿 > 0 such that max{(𝜅𝜀 − 𝛿𝐻)𝑝, 𝑝𝜅𝜀=0} = 𝛿𝐻 𝑝𝐻 +
[(𝑝𝐻 − 𝑝 − 𝜀) (Λ𝐻 − 𝛿𝐻)]+ and max{(𝜅𝜀 − 𝛿𝐿)𝑝𝐻 , 𝑝𝜅𝜀=0} = 𝛿𝐿 𝑝. Then,
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(i) When 𝜅1 < 𝛿𝐻 , there exist 0 ≤ 𝜅1 < 𝜅1 ≤ 𝜅𝜀, such that for any 𝜅 ∈ [𝜅1, 𝜅1], if𝜋𝐻 < if𝜋𝑅 .

(ii) When 𝜅2 < 𝛿𝐿 , there exist 0 ≤ 𝜅2 < 𝜅2 ≤ 𝜅𝜀, such that for any 𝜅 ∈ [𝜅2, 𝜅2], if𝜋𝑅 < if𝜋𝐿 .

Proposition 2 supports Observation 1 of the simulation study presented in Section 4.1. First,

scheduling 𝐻 patients before 𝐿 patients reduces overtime because more work is scheduled upfront.

In fact, scheduling 𝐻 patients first tends to minimize idle time, thus decreasing overtime. In a similar

vein, scheduling 𝐿 patients before 𝐻 leads to longer overtime compared to random sequencing

because less work is scheduled upfront.

Second, for 𝜅 sufficiently large, scheduling 𝐿 patients before 𝐻 patients reduces the average

waiting time. This is because significant overbooking at the beginning of the schedule creates a

backlog of work that 𝜋𝐿 tends to mitigate more effectively. In contrast, scheduling 𝐻 patients first

increases the average waiting time, e.g., compared to random sequencing. However, when 𝜅 is

small, the above relationships may not hold. For example, the numerical example in Figure 7(b)

shows that when 𝜅 ≥ 2, we have 𝑤̄𝜋𝐿 < 𝑤̄𝜋𝑅 < 𝑤̄𝜋𝐻 , but for 𝜅 < 2, the relationship is more complex.

Third, for moderate values of 𝜅, scheduling𝐻 patients first reduces individual unfairness, whereas

scheduling 𝐿 patients first increases individual unfairness, compared to random sequencing. This

is because scheduling 𝐿 patients upfront is associated with reduced waiting time and increased

idleness at the beginning of the schedule, and increased waiting time in later slots. In contrast, 𝜋𝐻
tends to better balance the waiting times of patients overbooked at the beginning, 𝑡 = 0, and at the

end, 𝑡 = 𝑇 . However, for very small or large 𝜅, these relationships may not hold. For example, the

numerical example in Figure 7(c) shows that when 1 < 𝜅 < 6, we have if𝜋𝐻 < if𝜋𝑅 < if𝜋𝐿 , but the

relationship becomes more complex when 𝜅 < 1 or 𝜅 > 6.

5.3. Trade-offs between Overtime, Wait Time, and Fairness

To shed more light on the trade-offs between different performance metrics for a given sequencing

rule, we now focus on random sequencing.

Proposition 3. For any 𝜀, there exist 0 ≤ 𝜅𝑙 < 𝜅𝑢 ≤ 𝜅𝜀, such that for any 𝜅 ∈ [𝜅𝑙 , 𝜅𝑢], we have

𝑑𝑣𝜋𝑅

𝑑𝜅
≤ 0,

𝑑𝑤̄𝜋𝑅

𝑑𝜅
> 0,

𝑑if𝜋𝑅

𝑑𝜅
< 0, and

𝑑2if𝜋𝑅

𝑑 (𝑤̄𝜋𝑅 )2 > 0.

For any fixed 𝜅 > 0, there exists 𝜀 > 0, such that for any 𝜀 ∈ [0, 𝜀], we have

𝑑𝑣𝜋𝑅

𝑑𝜀
≥ 0,

𝑑𝑤̄𝜋𝑅

𝑑𝜀
< 0,

𝑑if𝜋𝑅

𝑑𝜀
> 0, and

𝑑2if𝜋𝑅

𝑑 (𝑤̄𝜋𝑅 )2 > 0.
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Figure 7 Fluid performance for all three sequencing rules.

Proposition 3 examines how 𝜅 and 𝜀 affect system performance. Specifically, for moderate 𝜅 and

𝜀, increasing the amount of overbooking 𝜅 while keeping the slot length 𝜀 fixed, or decreasing

the slot length through 𝜀 while keeping 𝜅 fixed, both result in reduced overtime, increased average

waiting time, and reduced individual unfairness. In particular, overtime and individual unfairness

trend in the same direction, while the average waiting time trends in the opposite direction. In

addition, there is a convex relationship between individual unfairness and average waiting time.

These findings align closely with Observation 2 in our simulation study.

In Figure 8, we present a numerical example quantifying the trade-offs between overtime, average

waiting time, and individual unfairness. In Figure 8(a)(b), the slot length is fixed while the initial

overbooking 𝜅 varies. In Figure 8(c)(d), the overbooking at time 0 is fixed while 𝜀 varies along the

curve. In addition to confirming the findings of Proposition 3, these graphs also highlight that the
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Figure 8 Trade-offs between fluid performance metrics.

ranges of 𝜅 and 𝜀 characterized in Proposition 3 correspond to scheduling policies on the efficiency

frontier of the trade-off curves. In contrast, parameter values outside these ranges may represent

strategies that deviate from the efficiency frontier, making them less practically relevant.

5.4. Connecting Stochastic and Fluid Models

In this section, we study the connection between the stochastic model and the fluid model numer-

ically, analyzing the conditions under which these two models yield similar performance. As

illustrated in Figure 13 in Appendix C, we observe that as the size of the system (𝑇 and Λ)

increases, the fluid model becomes a more accurate approximation to the stochastic model. Addi-

tional numerical results supporting this observation are provided in Appendix C. Furthermore,

while the stochastic model captures finer variations, the fluid model remains useful even in smaller

systems. In particular, qualitative insights, such as trade-offs between different system performance
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metrics, remain consistent in both models. For example, in small systems, Figures 2 and 7 reveal

differences in magnitude but convey the same insights regarding the impact of utilizing stratified

show-up predictions in stochastic and fluid models. The same applies to Figures 3 and 8, which

show how individual unfairness is traded off with other metrics of operational performance.

6. Conclusion
This study examines the use of stratified show-up probability predictions in outpatient scheduling

systems and evaluates their impact on both fairness and operational efficiency. We also explore

the trade-offs between operational performance metrics and fairness metrics, offering insights into

how these competing objectives can be balanced in appointment scheduling. Our results reveal

that stratified show-up probability predictions, although widely considered essential to improve

operational performance, may not be necessary. Furthermore, while it is possible to simultaneously

reduce overtime and individual unfairness, reducing average waiting time often results in increased

individual unfairness. This highlights a key trade-off in the design of scheduling policies.

We investigate a comprehensive set of scheduling decisions, including appointment slot length

design, overbooking strategies, and patient sequencing, while ensuring that the policies remain

practical and implementable. Our numerical study covers a wide range of system configurations

in various scenarios, providing robust insights. To further support our findings, we complement

numerical analysis with analytical results based on fluid-based approximations, enhancing both the

depth and generalizability of our results.

Our study has several limitations that open interesting avenues for future research. First, we do

not provide an analytical solution for the appointment scheduling problem, e.g., the case studies

considered in Section 4.2, leaving an opportunity for future work to derive closed-form solutions

or approximate analytical insights. Second, while our study focuses on stratified prediction, an

extension to fully personalized, individual-level predictive information could offer new possibilities

for optimizing scheduling strategies. Investigating how these more granular predictions impact

both operational efficiency and fairness would be a valuable contribution. Finally, our work centers

on offline scheduling; future research could examine online sequential scheduling systems that

incorporate individual predictive no-show information in real-time decision making.
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Online Appendix to Fair and Efficient Scheduling with Stratified No-Show
Prediction

Appendix A: Numerical Study

Our numerical experiments cover a wide range of system configurations including different lengths of the schedul-

ing period, 𝑇 = 10 and 𝑇 = 30, different panel sizes, Λ = 1.2𝑇/𝑝,1.5𝑇/𝑝, and 1.8𝑇/𝑝, different show-up proba-

bilities, (𝑝𝐿 , 𝑝𝐻 ) = (0.6,0.8), (𝑝𝐿 , 𝑝𝐻 ) = (0.3,0.7), (𝑝𝐿 , 𝑝𝐻 ) = (0.2,0.3), and different compositions of patients,

𝛾 = 0.25,0.5,0.75. We also consider both exponentially distributed and deterministic service times.

For each system configuration, to study the trade-off between different performance metrics or to search for the

best performing policy with the problem formulations introduced in Section 4.2, we consider different slot lengths

(𝜀 = 0,0.1, ...,1 − 𝑝), different numbers of overbooked patients in the first slot (𝜅 = 0,1, . . . , ⌊Λ − 𝑇/(𝑝 + 𝜀)⌋), and

different sequencing rules (𝜋𝑅, 𝜋𝐿 , and 𝜋𝐻 ). In total (across different system configurations and policies) we evaluate

99,780 unique systems.

All results are available at https://tinyurl.com/mwhfw4jr. The observations in Section 4 are consistent across

all system configurations and problem instances. This indicates that our findings are not restricted to a narrow set of

assumptions and demonstrate the robustness of our results under various conditions.

In this section, we provide some additional examples. In Figures 9, 10, and 11, we show performance trends and

trade-offs for a system with 𝑇 = 30, Λ= 47, (𝑝𝐿 , 𝑝𝐻 ) = (0.6,0.8), 𝛾 = 0.25, 𝑆𝑖 = 1. In Table 1, we show 5 examples out

of 11,772 case study problems discussed in Section 4.2. The detailed system configuration and problem parameters

can be found in the table.

Appendix B: Fluid Analysis: Evolution of 𝑥 𝑗 (𝑡)

B.1. Sequencing Rule 𝜋𝐻

In Figure 12, we plot the evolution of 𝑥 𝜋𝐻 (𝑡) with 𝑝 + 𝜀 < 𝑝𝐻 , based on a numerical example. At time 0, 𝜅 patients

are overbooked, and 𝜅𝑝𝐻 patients show up. The value of 𝑥 𝜋𝐻 (𝑡) then increases with time at a rate of
(

𝑝𝐻

𝑝+𝜀 − 1
)

until

𝑡 = (Λ𝐻 − 𝜅) (𝑝 + 𝜀), since all patients up to this point belong to group 𝐻. Afterward, 𝑥 𝜋𝐻 (𝑡) decreases at a rate of(
1− 𝑝𝐿

𝑝+𝜀

)
until time 𝑇 , when patients from group 𝐿 are scheduled. At time 𝑇 , 𝜅𝜀 − 𝜅 patients are overbooked, and the

total number of show-ups is (𝜅𝜀 − 𝜅)𝑝𝐿 . Finally, after time 𝑇 , no more patients are scheduled, and 𝑥 𝜋𝐻 (𝑡) decays at a

rate of 1. Here is an explicit characterization of 𝑥 𝜋𝐻 (𝑡).
For the 𝜋𝐻 rule, we have

𝑥 𝜋𝐻 (𝑡) =



(
𝜅𝑝𝐻 +

(
𝑝𝐻

𝑝+𝜀 − 1
)
𝑡

)+
, if 0 ≤ 𝑡 < (Λ𝐻 − 𝜅) (𝑝 + 𝜀),((

𝜅𝑝𝐻 −
(
1− 𝑝𝐻

𝑝+𝜀

)
(Λ𝐻 − 𝜅) (𝑝 + 𝜀)

)+
+

(
𝑝𝐿

𝑝+𝜀 − 1
)
(𝑡 − (Λ𝐻 − 𝜅) (𝑝 + 𝜀))

)+
=

(
𝜅𝑝𝐻 + 𝑝𝐻−𝑝𝐿

𝑝+𝜀 (Λ𝐻 − 𝜅) (𝑝 + 𝜀) −
(
1− 𝑝𝐿

𝑝+𝜀

)
𝑡

)+
, if (Λ𝐻 − 𝜅) (𝑝 + 𝜀) ≤ 𝑡 < 𝑇,

(𝑣𝜋𝐻 − (𝑡 −𝑇))+ , if 𝑡 ≥ 𝑇.

(5)

• For 0 ≤ 𝑡 < (Λ𝐻 − 𝜅) (𝑝 + 𝜀): This phase represents the initial scheduling of 𝐻 patients. The expression(
𝜅𝑝𝐻 +

(
𝑝𝐻

𝑝+𝜀 − 1
)
𝑡

)+
reflects the evolution of the number of high-probability patients in the system. The term

𝜅𝑝𝐻 accounts for the initial overbooked patients who show up, while the slope
(

𝑝𝐻

𝑝+𝜀 − 1
)

captures the arrival

and service rate of high-probability patients.
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Figure 9 System performance across all three sequencing rules for varying 𝜅 values.

Figure 10 The relationship between individual unfairness, overtime, and wait time under different scheduling

designs and 𝜋𝑅 .
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Figure 11 Pareto frontier of trade-offs between overtime, wait time, and fairness across sequencing rules.

Table 1 Five examples of the Case Study results.

(i) (ii) (iii) (iv) (v)
𝑇 10 30 10 30 10
𝑝𝐻 0.8 0.8 0.7 0.7 0.3
𝑝𝐿 0.6 0.6 0.3 0.3 0.2
𝛾 0.5 0.25 0.25 0.5 0.75
Λ 17 47 20 20 53
𝑆𝑖 1 0 0 1 1
𝑤𝑜 1 2 0 0 0
𝑤𝑖 𝑓 2 0 0 0 0
𝑤𝑔 𝑓 0 2 0 0 0
𝑐𝑜 50% 75% max
𝑐𝑖 𝑓 50% 75% max
𝑐𝑔 𝑓 50% max max

top 10 policies

R4_10,
H2_0,
H4_10,
L7_30,
L4_10,
R5_20,
L6_30,
H3_10,
H5_20,
L5_20

R3_0, R4_0,
R2_0, R5_0,
H3_0, R6_0,
H5_10,
L7_10,
R7_10,
R6_10

H3_30,
R3_10,
R2_0,
H2_10,
R4_20,
H4_40,
H1_0,
H3_20,
R4_10,
H4_30

R6_10,
H1_20,
H0_20,
H4_30,
H2_20,
R7_10,
R0_0,
H6_40,
R1_0,
R2_0

H3_10,
R6_10,
H5_10,
R7_10,
L3_0,
H4_10,
R4_10,
H1_10,
R5_10,
L8_10

objective values

9.07, 9.12,
9.15, 9.2,
9.25, 9.25,
9.3, 9.31,
9.34, 9.35

14.27, 14.31,
14.41, 14.49,
14.79, 14.86,
14.9, 14.94,
15.04, 15.06

1.22, 1.25,
1.33, 1.33,
1.37, 1.39,
1.43, 1.45,
1.58, 1.59

3.41, 3.48,
3.48, 3.49,
3.5, 3.53,
3.59, 3.59,
3.59, 3.59

1.72, 1.74,
1.75, 1.76,
1.76, 1.76,
1.76, 1.76,
1.76, 1.77

range 5.32 15.39 2.42 10.5 2.9
best 𝜋𝑅 R4_10 R3_0 R3_10 R6_10 R6_10
best 𝜋𝑅 objective 9.07 14.27 1.25 3.41 1.74
gap in % 0 0 3.13 0 1.06
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Figure 12 Fluid level in the system under 𝜋𝐻 at each time 𝑡.

• For (Λ𝐻 − 𝜅) (𝑝+𝜀) ≤ 𝑡 < 𝑇 : After 𝐻 patients have been served, 𝐿 patients are served next. The slope
(

𝑝𝐿

𝑝+𝜀 − 1
)

is

adjusted for the new arrival rate. With 𝑡 = (Λ𝐻 − 𝜅) (𝑝 + 𝜀), the expression
(
𝜅𝑝𝐻 −

(
1− 𝑝𝐻

𝑝+𝜀

)
(Λ𝐻 − 𝜅) (𝑝 + 𝜀)

)+
captures the amount of fluid at time (Λ𝐻 − 𝜅) (𝑝 + 𝜀).

• For 𝑡 ≥ 𝑇 : This phase represents the overtime period, where 𝑣𝜋𝐻 patients are in the system at 𝑇 and patients are

served at a rate of 1. The explicit expression of 𝑣𝜋𝐻 is given in the proof of Proposition 2 in Appendix E.

B.2. Sequencing Rule 𝜋𝑅

For the 𝜋𝑅 rule, the overbooked fluid that shows up at time 0 is 𝜅𝑝, which decays at a rate of 𝑝

𝑝+𝜀 −1 = 𝜀
𝑝+𝜀 . Therefore,

for 0 ≤ 𝑡 < 𝑇 , 𝑥 𝜋𝑅 (𝑡) =
(
𝜅𝑝 − 𝜀

𝑝+𝜀 𝑡
)+

. At time 𝑇 , the overbooked fluid that shows up is (Λ − 𝑇/(𝑝 + 𝜀) − 𝜅)𝑝, so

𝑥 𝜋𝑅 (𝑇) =
(
𝜅𝑝 − 𝜀

𝑝+𝜀𝑇
)+

+ (Λ−𝑇/(𝑝 + 𝜀) − 𝜅)𝑝. Thus, the expression for 𝑥 𝜋𝑅 (𝑡) in (4) is obtained.

B.3. Sequencing Rule 𝜋𝐿

For the 𝜋𝐿 rule, where 𝐿 patients are scheduled before 𝐻 patients, the analysis mirrors that for the 𝜋𝐻 rule, but with 𝐿

patients served earlier. The resulting expression for 𝑥 𝜋𝐿 (𝑡):

𝑥 𝜋𝐿 (𝑡) =



(
𝜅𝑝𝐿 −

(
1− 𝑝𝐿

𝑝+𝜀

)
𝑡

)+
, if 0 ≤ 𝑡 < (Λ𝐿 − 𝜅) (𝑝 + 𝜀),((

𝜅𝑝𝐿 −
(
1− 𝑝𝐿

𝑝+𝜀

)
(Λ𝐿 − 𝜅) (𝑝 + 𝜀)

)+
+

(
𝑝𝐻

𝑝+𝜀 − 1
)
(𝑡 − (Λ𝐿 − 𝜅) (𝑝 + 𝜀))

)+
,

if (Λ𝐿 − 𝜅) (𝑝 + 𝜀) ≤ 𝑡 < 𝑇,

(𝑣𝜋𝐿 − (𝑡 −𝑇))+ , if 𝑡 ≥ 𝑇.

(6)

The explicit characterization of 𝑣𝜋𝐿 is given in the proof of Proposition 2 in Appendix E.

Appendix C: Connecting the Stochastic and Fluid Models

To explore the accuracy of the fluid approximation, for a fixed slot length, we let 𝑇 increase, while increasing the census

level Λ proportionally. In Figure 13, we plot the trajectories for 𝑥 𝜋𝑅 (𝑡) in the fluid and stochastic models, for 𝑇 = 10,

20, 50, 100, 500, and 1000. The plots illustrate how the trajectories evolve as 𝑇 and Λ increase.

In Figure 13, we estimate the stochastic model curves by averaging over 104 simulation replications. For 𝑇 = 10,

the stochastic and fluid trajectories are distinct, reflecting the inherent variability and randomness in smaller systems.

However, as 𝑇 increases, these trajectories begin to converge, revealing similar patterns by 𝑇 = 50. As 𝑇 continues to

increase, the curves overlap significantly and by𝑇 = 500, the fluid and stochastic trajectories are nearly indistinguishable.

In these larger systems, the fluid model serves as an effective approximation, capturing the overall system dynamics

while smoothing out individual variations that are more pronounced in smaller systems.
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Figure 13 System trajectories comparing the numbers of patients in the system over time for the stochastic and

fluid models across different session lengths.

Appendix D: Plateau-Dome Policies

In our main analysis, we focus exclusively on a special class of “plateau-dome" policies. In this section, we expand

the search space to also look at other scheduling policies. In particular, we remove the restriction that overbooking

occurs only at the beginning and end of the session, while keeping other system characterizations the same. In this

case, overbooking is allowed at any slot during the session.

For computational traceability, we investigate system configurations with 𝑇 = 5,6,7, (𝑝𝐿 , 𝑝𝐻 ) = (0.6,0.8), 𝛾 =

0.5, Λ = 1.2𝑇/𝑝, and deterministic and exponential service times with mean 1. For each system configuration

(𝑇,Λ, 𝑝𝐿 , 𝑝𝐻 , 𝛾, 𝑆𝑖), we explore the sequencing rules (𝜋𝑅, 𝜋𝐻 , 𝜋𝐿), vary 𝜀 = 0,0.05,0.1,0.15, ...,0.3, and consider the

unrestricted overbooking design described above. In total, we evaluated 12,516 systems. The plateau-dome policies are

assessed in this expanded policy set as well. We consider problems (2) and (3) in Section 4.2, proceed similarly to that

section, and report the 654 suboptimality gaps for the best performing plateau-dome policies.
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Figure 14 Histogram of suboptimality gaps for plateau-dome policies.

We can see in Figure 14 that in most of the scenarios tested, the suboptimality gaps are less than 5%. Thus, by

narrowing the design space to the more restricted special class of plateau-dome policies, it is still possible to achieve

near-optimal performance.

Appendix E: Proofs of Propositions

Proof of Proposition 1 We discuss the cases with constant service time and exponential service time separately.

Constant service times. Assume that the service time is constant, that is, 𝑆𝑖 = 1. We consider the following two

subcases depending on the value of Δ𝑖 .

(a) Δ𝑖 ≥ 1:

𝑊0 = 0, 𝑆0 = 0, Δ1 = 0, so 𝑊1 = 0, 𝑊2 = (𝐼1 −Δ2)+ = 0. Therefore, 𝑊𝑖 = 0 and E[𝑊𝑖] = 0 for all 𝑖.

Meanwhile, since we have Δ𝑖 ≥ 1 > 𝑝𝑖−1, there exists 𝛼𝑖 > 0, such that Δ𝑖 ≥ 𝑝𝑖−1 +𝛼𝑖 .

(b) Δ𝑖 < 1:

If 0 ≤𝑊𝑖−1 ≤ Δ𝑖 < 1, then 1− (Δ𝑖 −𝑊𝑖−1) > 0 and 0 ≤ Δ𝑖 −E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖] ≤ Δ𝑖 < 1. Therefore, we have

E[𝑊𝑖 |𝑊𝑖−1 > Δ𝑖] = E[𝑊𝑖−1 + 𝐼𝑖−1 −Δ𝑖 |𝑊𝑖−1 > Δ𝑖]

= E[𝑊𝑖−1 |𝑊𝑖−1 > Δ𝑖] + (𝑝𝑖−1 −Δ𝑖).

E[𝑊𝑖 |𝑊𝑖−1 ≤ Δ𝑖] = E[(𝑊𝑖−1 + 𝐼𝑖−1 −Δ𝑖)+ |𝑊𝑖−1 ≤ Δ𝑖]

= 𝑝𝑖−1 E[𝑊𝑖−1 + 1−Δ𝑖 |𝑊𝑖−1 ≤ Δ𝑖 , 𝐼𝑖−1 = 1]

= 𝑝𝑖−1 E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖] + 𝑝𝑖−1 (1−Δ𝑖).

E[𝑊𝑖] = E[𝑊𝑖 |𝑊𝑖−1 > Δ𝑖] P(𝑊𝑖−1 > Δ𝑖) +E[𝑊𝑖 |𝑊𝑖−1 ≤ Δ𝑖] P(𝑊𝑖−1 ≤ Δ𝑖)

= (E[𝑊𝑖−1 |𝑊𝑖−1 > Δ𝑖] + (𝑝𝑖−1 −Δ𝑖)) P(𝑊𝑖−1 > Δ𝑖) + (𝑝𝑖−1 E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖] + 𝑝𝑖−1 (1−Δ𝑖)) P(𝑊𝑖−1 ≤ Δ𝑖)

= E[𝑊𝑖−1] − (1− 𝑝𝑖−1) E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖] P(𝑊𝑖−1 ≤ Δ𝑖) + (𝑝𝑖−1 −Δ𝑖) + (1− 𝑝𝑖−1)Δ𝑖 P(𝑊𝑖−1 ≤ Δ𝑖)

= E[𝑊𝑖−1] + 𝑝𝑖−1 −Δ𝑖 + (1− 𝑝𝑖−1) (Δ𝑖 −E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖]) P(𝑊𝑖−1 ≤ Δ𝑖).

E[𝑊𝑖] ≤ E[𝑊𝑖−1] ⇔ 𝑝𝑖−1 ≤
Δ𝑖 −P(𝑊𝑖−1 ≤ Δ𝑖) (Δ𝑖 −E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖])
1−P(𝑊𝑖−1 ≤ Δ𝑖) (Δ𝑖 −E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖])

=:
Δ𝑖 − 𝛼̃𝑖

1− 𝛼̃𝑖

,

where 0 < 𝛼̃𝑖 ≤ Δ𝑖 < 1. Moreover, with Δ𝑖 − 𝛼̃𝑖 < Δ𝑖 −Δ𝑖𝛼̃𝑖 ⇔ Δ𝑖− 𝛼̃𝑖

1− 𝛼̃𝑖
< Δ𝑖 , we let 𝛼𝑖 := Δ𝑖 − Δ𝑖− 𝛼̃𝑖

1− 𝛼̃𝑖
, where 𝛼𝑖 > 0.

That is, E[𝑊𝑖] ≤ E[𝑊𝑖−1] ⇔ 𝑝𝑖−1 ≤ Δ𝑖 −𝛼𝑖 ⇔ Δ𝑖 ≥ 𝑝𝑖−1 +𝛼𝑖 .
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Exponential service times. Assume that the service time 𝑆𝑖 is exponentially distributed with E[𝑆𝑖] = 1.

We have E[𝑆𝑖 |𝑆𝑖 > 𝑠] = 𝑠 + 1 and

E[𝑊𝑖 |𝑊𝑖−1 = 𝑤] = E[(𝑤 + 𝑆𝑖−1𝐼𝑖−1 −Δ𝑖)+]

= (1− 𝑝𝑖−1) (𝑤 −Δ𝑖)+ + 𝑝𝑖−1 E[(𝑤 + 𝑆𝑖−1 −Δ𝑖)+] .

E[(𝑤 + 𝑆𝑖−1 −Δ𝑖)+] = E[𝑤 + 𝑆𝑖−1 −Δ𝑖 | 𝑆𝑖−1 > Δ𝑖 −𝑤] P(𝑆𝑖−1 > Δ𝑖 −𝑤)

= (𝑤 + (1+ (Δ𝑖 −𝑤)+) −Δ𝑖)𝑒−(Δ𝑖−𝑤)+ .

E[𝑊𝑖] = E[E[𝑊𝑖 |𝑊𝑖−1]]

= E
[
(1− 𝑝𝑖−1) (𝑊𝑖−1 −Δ𝑖)+ + 𝑝𝑖−1 (𝑊𝑖−1 + (1+ (Δ𝑖 −𝑊𝑖−1)+) −Δ𝑖)𝑒−(Δ𝑖−𝑊𝑖−1 )+

]
= E

[
𝑝𝑖−1𝑒

−(Δ𝑖−𝑊𝑖−1 ) |𝑊𝑖−1 ≤ Δ𝑖

]
P(𝑊𝑖−1 ≤ Δ𝑖) +E [𝑊𝑖−1 −Δ𝑖 + 𝑝𝑖−1 |𝑊𝑖−1 > Δ𝑖] P(𝑊𝑖−1 > Δ𝑖)

= E[𝑊𝑖−1] + (𝑝𝑖−1 −Δ𝑖)

+
(
Δ𝑖 −E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖] − 𝑝𝑖−1 + 𝑝𝑖−1 E[𝑒−(Δ𝑖−𝑊𝑖−1 ) |𝑊𝑖−1 ≤ Δ𝑖]

)
P(𝑊𝑖−1 ≤ Δ𝑖)

= E[𝑊𝑖−1] + (𝑝𝑖−1 −Δ𝑖) + (1− 𝑝𝑖−1) (Δ𝑖 −E[𝑊𝑖−1 |𝑊𝑖−1 ≤ Δ𝑖]) P(𝑊𝑖−1 ≤ Δ𝑖)

+ 𝑝𝑖−1 E[𝑒−(Δ𝑖−𝑊𝑖−1 ) − (1− (Δ𝑖 −𝑊𝑖−1)) |𝑊𝑖−1 ≤ Δ𝑖] P(𝑊𝑖−1 ≤ Δ𝑖)

:= E[𝑊𝑖−1] + (𝑝𝑖−1 −Δ𝑖) + (1− 𝑝𝑖−1)𝛼̃𝑖 + 𝑝𝑖−1𝛽𝑖 ,

where 𝛽𝑖 ≥ 0 as 𝑒−𝑧 ≥ 1− 𝑧 for all 𝑧 ≥ 0 and 0 ≤ 𝛼̃𝑖 − 𝛽𝑖 = E[1− 𝑒−(Δ𝑖−𝑊𝑖−1 ) |𝑊𝑖−1 ≤ Δ𝑖] P(𝑊𝑖−1 ≤ Δ𝑖) < 1.

Therefore, similar as case 1 above, E[𝑊𝑖] ≤ E[𝑊𝑖−1] ⇔ 𝑝𝑖−1 ≤ Δ𝑖− 𝛼̃𝑖

1− 𝛼̃𝑖+𝛽𝑖
.

Furthermore, if 𝛼̃𝑖 = 𝛽𝑖 , then we have E[𝑊𝑖] ≤ E[𝑊𝑖−1] ⇔ 𝑝𝑖−1 ≤ Δ𝑖 − 𝛼̃𝑖 and we let 𝛼𝑖 := 𝛼̃𝑖 , where 𝛼̃𝑖 > 0.

Otherwise, Δ𝑖− 𝛼̃𝑖

1− 𝛼̃𝑖+𝛽𝑖
< Δ𝑖 ⇔ Δ𝑖 − 𝛼̃𝑖 < Δ𝑖 (1− 𝛼̃𝑖 + 𝛽𝑖) ⇔ Δ𝑖 <

𝛼̃𝑖

𝛼̃𝑖−𝛽𝑖
. We then let 𝛼𝑖 := Δ𝑖 − Δ𝑖− 𝛼̃𝑖

1− 𝛼̃𝑖+𝛽𝑖
if Δ𝑖 <

𝛼̃𝑖

𝛼̃𝑖−𝛽𝑖
. That

is, E[𝑊𝑖] ≤ E[𝑊𝑖−1] ⇔ 𝑝𝑖−1 ≤ Δ𝑖 − 𝛼𝑖 ⇔ Δ𝑖 ≥ 𝑝𝑖−1 + 𝛼𝑖 if Δ𝑖 <
𝛼̃𝑖

𝛼̃𝑖−𝛽𝑖
. When Δ𝑖 ≥ 𝛼̃𝑖

𝛼̃𝑖−𝛽𝑖
, we have Δ𝑖− 𝛼̃𝑖

1− 𝛼̃𝑖+𝛽𝑖
≥ Δ𝑖 ≥

𝛼̃𝑖

𝛼̃𝑖−𝛽𝑖
> 1 > 𝑝𝑖−1. That is E[𝑊𝑖] ≤ E[𝑊𝑖−1], and Δ𝑖 > 𝑝𝑖−1, in which case, there exists 𝛼𝑖 > 0, such that Δ𝑖 ≥ 𝑝𝑖−1 +𝛼𝑖 .

Proof of Proposition 2 For any fixed 𝜀 ≥ 0, we define

𝛿 :=Λ− 𝑇

𝑝
, 𝛿𝜀 :=Λ− 𝑇

𝑝 + 𝜀 = 𝜅𝜀 . So we have 0 ≤ 𝜅 ≤ 𝛿𝜀 , 𝛿 = 𝛿𝜀=0, 𝛿𝜀 = 𝛿 + 𝜀𝑇

𝑝(𝑝 + 𝜀) . (7)

Proof of part 1 of the proposition. Let 𝑦 𝑗 (𝑡) where 𝑗 = 𝜋𝐿 , 𝜋𝑅, 𝜋𝐻 be the remaining of the initial overbooking at

time 𝑡, which is allowed to be negative. Since 𝑥 𝜋𝑅 (𝑡) =
(
𝜅𝑝 − 𝜀

𝑝+𝜀 𝑡
)+

for 0 ≤ 𝑡 < 𝑇 by (4), we have 𝑦𝜋𝑅 (𝑡) = 𝜅𝑝− 𝜀
𝑝+𝜀 𝑡.

Moreover,

𝑦𝜋𝑅 (𝑇) > 0 ⇔ 𝜅𝑝 − 𝜀

𝑝 + 𝜀𝑇 > 0 ⇔ 𝜅 >
𝜀𝑇

𝑝(𝑝 + 𝜀) ⇔ (𝛿𝜀 − 𝜅)𝑝 < 𝛿𝑝 (by (7)), and

𝑦𝜋𝑅 (𝑇) + (𝛿𝜀 − 𝜅)𝑝 = 𝜅𝑝 − 𝜀𝑇

𝑝 + 𝜀 +
(
𝛿 + 𝜀𝑇

𝑝(𝑝 + 𝜀) − 𝜅

)
𝑝 = 𝛿𝑝.

Note that (𝛿𝜀 − 𝜅)𝑝 is the show-up amount of overbooking at 𝑇 . That is, if 𝑦𝜋𝑅 (𝑇) > 0, then (𝛿𝜀 − 𝜅)𝑝 < 𝛿𝑝 and

𝑥 𝜋𝑅 (𝑇) = 𝑦𝜋𝑅 (𝑇) + (𝛿𝜀 − 𝜅)𝑝 = 𝛿𝑝; otherwise, if 𝑦𝜋𝑅 (𝑇) ≤ 0, then (𝛿𝜀 − 𝜅)𝑝 ≥ 𝛿𝑝 and 𝑥 𝜋𝑅 (𝑇) = 0 + (𝛿𝜀 − 𝜅)𝑝. As
𝑑𝑥𝜋𝑅 (𝑡 )

𝑑𝑡
= −1 for 𝑡 ≥ 𝑇 ,

𝑣𝜋𝑅 = 𝑥 𝜋𝑅 (𝑇) = (𝛿𝜀 − 𝜅)𝑝 + [𝑦𝜋𝑅 (𝑇)]+ = max{(𝛿𝜀 − 𝜅)𝑝, 𝛿𝑝}, (8)

in other words, 𝑣𝜋𝑅 = (𝛿𝜀 − 𝜅)𝑝 if 𝜅 < 𝜀𝑇
𝑝 (𝑝+𝜀) =: 𝜅𝑅 = 𝛿𝜀 − 𝛿, otherwise 𝑣𝜋𝑅 = 𝛿𝑝. Note that 0 ≤ 𝜅𝑅 < 𝛿𝜀 .
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Similarly, by (5), Λ𝑝 = Λ𝐻 𝑝𝐻 +Λ𝐿 𝑝𝐿 , and Λ𝐿 +Λ𝐻 = Λ, we have 𝑦𝜋𝐻 (𝑇) = 𝜅𝑝𝐿 + (𝑝𝐻 − 𝑝𝐿)Λ𝐻 − 𝑝+𝜀−𝑝𝐿

𝑝+𝜀 𝑇 =

𝜅𝑝𝐿 +Λ𝑝−𝑇 −Λ𝑝𝐿 + 𝑇
𝑝+𝜀 𝑝𝐿 = 𝜅𝑝𝐿 + 𝛿𝑝− 𝛿𝜀 𝑝𝐿 . Then again (𝛿𝜀 − 𝜅)𝑝𝐿 is the show-up amount of overbooking at 𝑇 ,

and we have

𝑦𝜋𝐻 (𝑇) > 0 ⇔ (𝛿𝜀 − 𝜅)𝑝𝐿 < 𝛿𝑝 and 𝑦𝜋𝐻 (𝑇) + (𝛿𝜀 − 𝜅)𝑝𝐿 = 𝛿𝑝,

𝑣𝜋𝐻 = max{(𝛿𝜀 − 𝜅)𝑝𝐿 , 𝛿𝑝}.

Similarly, we define 𝜅𝐻 such that (𝛿𝜀 − 𝜅𝐻 )𝑝𝐿 = 𝛿𝑝. Then for 𝜀 > 0, 𝜅𝐻 < 𝜅𝑅 ⇔ 𝛿𝜀 − 𝛿
𝑝

𝑝𝐿
< 𝛿𝜀 − 𝛿⇔ 𝛿 > 0, which is

true by assumption. And 𝜅𝑅 = 𝜅𝐻 = 0 for 𝜀 = 0. Therefore, for any 𝜅 ∈ [0, 𝜅𝐻 ), 𝑣𝜋𝐻 = (𝛿𝜀 − 𝜅)𝑝𝐿 ≤ (𝛿𝜀 − 𝜅)𝑝 = 𝑣𝜋𝑅 ,

for any 𝜅 ∈ [𝜅𝐻 , 𝜅𝑅), 𝑣𝜋𝐻 = 𝛿𝑝 ≤ (𝛿𝜀 − 𝜅)𝑝 = 𝑣𝜋𝑅 , and for any 𝜅 ≥ 𝜅𝑅, 𝑣𝜋𝐻 = 𝑣𝜋𝑅 = 𝛿𝑝. Hence, we have 𝑣𝜋𝐻 ≤ 𝑣𝜋𝑅 .

Follow the similar lines of reasoning, we show 𝑣𝜋𝑅 ≤ 𝑣𝜋𝐿 in the following. With (6) and Λ𝑝 = Λ𝐻 𝑝𝐻 + Λ𝐿 𝑝𝐿 ,

Λ𝐿 + Λ𝐻 = Λ, we have 𝑦𝜋𝐿 (𝑇) = (𝜅𝑝𝐿 − (𝑝 + 𝜀 − 𝑝𝐿) (Λ𝐿 − 𝜅))+ + (𝑝 + 𝜀 − 𝑝𝐻 ) (Λ𝐿 − 𝜅) −
(
1− 𝑝𝐻

𝑝+𝜀

)
𝑇 ≥ 𝜅𝑝𝐿 +

𝑝𝐿 (Λ𝐿 − 𝜅− 𝑝𝐻 (Λ𝐿 − 𝜅) −𝑇 + 𝑝𝐻𝑇

𝑝+𝜀 = 𝜅𝑝𝐻 + 𝛿𝑝 − 𝛿𝜀 𝑝𝐻 =: 𝑦̃𝜋𝐿 (𝑇). Meanwhile, 𝑦̃𝜋𝐿 (𝑇) > 0 ⇔ (𝛿𝜀 − 𝜅)𝑝𝐻 < 𝛿𝑝 and

𝑦̃𝜋𝐿 (𝑇) + (𝛿𝜀 − 𝜅)𝑝𝐻 = 𝛿𝑝. Therefore, 𝑣𝜋𝐿 ≥ max{(𝛿𝜀 − 𝜅)𝑝𝐻 , 𝛿𝑝} =: 𝑣̃𝜋𝐿 and 𝑣𝜋𝑅 ≤ 𝑣𝜋𝐿 , where we define 𝜅𝐿 such

that (𝛿𝜀 − 𝜅𝐿)𝑝𝐻 = 𝛿𝑝 and we have 𝜅𝑅 < 𝜅𝐿 < 𝛿𝜀 .

Hence, 𝑣𝜋𝐻 ≤ 𝑣𝜋𝑅 ≤ 𝑣𝜋𝐿 .

Proof of part 2 of the proposition. When 𝜅 ≥ 𝜅𝑅, we know by the proof of the first part of Proposition 2 that

𝑣𝜋𝑅 = 𝑣𝜋𝐻 = 𝛿𝑝, 𝑦𝜋𝑅 (𝑇) = 𝛿𝑝 − (𝛿𝜀 − 𝜅)𝑝 ≥ 0, and 𝑦𝜋𝐻 (𝑇) = 𝛿𝑝 − (𝛿𝜀 − 𝜅)𝑝𝐿 ≥ 0. Therefore, we have

𝑤̄𝜋𝑅 =
1
Λ𝑝

(∫ 𝑇

0
𝑥 𝜋𝑅 (𝑡)𝑑𝑡 +

∫ 𝑇+Λ

𝑇

𝑥 𝜋𝑅 (𝑡)𝑑𝑡
)
=

1
Λ𝑝

(∫ 𝑇

0
𝑥 𝜋𝑅 (𝑡)𝑑𝑡 + 1

2
(𝑣𝜋𝑅 )2

)
=

𝑇

2Λ𝑝
(𝑥 𝜋𝑅 (0) + 𝑦𝜋𝑅 (𝑇)) + 1

2Λ𝑝
(𝑣𝜋𝑅 )2 (*)

=
𝑇

2Λ𝑝
(𝜅𝑝 + 𝛿𝑝 − (𝛿𝜀 − 𝜅)𝑝) + 1

2Λ𝑝
(𝑣𝜋𝑅 )2

,

𝑤̄𝜋𝐻 =
1
Λ𝑝

(∫ 𝑇

0
𝑥 𝜋𝐻 (𝑡)𝑑𝑡 +

∫ 𝑇+Λ

𝑇

𝑥 𝜋𝐻 (𝑡)𝑑𝑡
)
=

1
Λ𝑝

(∫ 𝑇

0
𝑥 𝜋𝐻 (𝑡)𝑑𝑡 + 1

2
(𝑣𝜋𝐻 )2

)
≥ 𝑇

2Λ𝑝
(𝑥 𝜋𝐻 (0) + 𝑦𝜋𝐻 (𝑇)) + 1

2Λ𝑝
(𝑣𝜋𝐻 )2 (**)

=
𝑇

2Λ𝑝
(𝜅𝑝𝐻 + 𝛿𝑝 − (𝛿𝜀 − 𝜅)𝑝𝐿) +

1
2Λ𝑝

(𝑣𝜋𝑅 )2
.

In step (*), the derivation follows from the trapezoid area formula for 𝑡 ∈ [0,𝑇). In step (**), the inequality follows

because
𝑑𝑥 𝜋𝐻 (𝑡)

𝑑𝑡

����
𝑡< (Λ𝐻−𝜅 ) (𝑝+𝜀)

=
𝑝𝐻

𝑝 + 𝜀 − 1 >
𝑝𝐿

𝑝 + 𝜀 − 1 =
𝑑𝑥 𝜋𝐻 (𝑡)

𝑑𝑡

����
(Λ𝐻−𝜅 ) (𝑝+𝜀)≤𝑡<𝑇

,

then 𝑥 𝜋𝐻 (𝑡) is concave for 𝑡 ∈ [0,𝑇). Therefore, the associated area is larger than the trapezoid area consisting of 𝑥 𝜋𝐻 (0),
𝑦𝜋𝐻 (𝑇), and 𝑇 . By assumption, we have 𝑝𝐿 < 𝑝 < 𝑝𝐻 . Hence, 𝑤̄𝜋𝐻 > 𝑤̄𝜋𝑅 . That is, there exists 0 ≤ 𝜅1 ≤ 𝜅𝑅 < 𝛿𝜀 = 𝜅𝜀 ,

such that for any 𝜅 ∈ [𝜅1, 𝜅𝜀], 𝑤̄𝜋𝐻 > 𝑤̄𝜋𝑅 .

By (6), 𝑦𝜋𝐿 (𝑇) > 𝑦̃𝜋𝐿 (𝑇) only when 𝑝𝐻 > 𝑝+𝜀 and 𝜅𝑝𝐿 − (𝑝+𝜀− 𝑝𝐿) (Λ𝐿 − 𝜅) < 0, where the latter is equivalent to

𝜅 < Λ𝐿
𝑝+𝜀−𝑝𝐿

𝑝+𝜀 := 𝜅𝐿 . Moreover, 𝜅𝐿 < 𝛿𝜀 ⇔Λ𝐿 𝑝𝐿 +Λ𝐻 (𝑝+𝜀) > 𝑇 , which is true by the assumption ofΛ𝐿 𝑝𝐿 +Λ𝐻 𝑝 >

𝑇 . Therefore, similar to above, when 𝜅 ≥ max{𝜅𝐿 , 𝜅𝐿}, we have 𝑥 𝜋𝐿 (0) = 𝜅𝑝𝐿 < 𝜅𝑝𝐻 = 𝑥 𝜋𝑅 (0), 𝑥 𝜋𝐿 (𝑇) = 𝑥 𝜋𝑅 (𝑇), and

𝑥 𝜋𝐿 (𝑡) is convex for 𝑡 ∈ [0,𝑇). Hence, we have 𝑤̄𝜋𝑅 > 𝑤̄𝜋𝐿 . That is, there exists 0 ≤ 𝜅2 ≤ max{𝜅𝐿 , 𝜅𝐿} < 𝛿𝜀 = 𝜅𝜀 , such

that for any 𝜅 ∈ [𝜅2, 𝜅𝜀], 𝑤̄𝜋𝑅 > 𝑤̄𝜋𝐿 .
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Proof of part 3 of the proposition. We consider the following two subcases.

(a) By (8), 𝑣𝜋𝑅 is a function of 𝜅 which is non-increasing in 𝜅. We denote this function as 𝑣𝜋𝑅 (𝜅). On the other hand,

the function 𝑚(𝜅) := 𝜅𝑝𝐻 + [(𝑝𝐻 − 𝑝 − 𝜀) (Λ𝐻 − 𝜅)]+ = 𝜅𝑝𝐻 + (𝑝𝐻 − 𝑝 − 𝜀)+ (Λ𝐻 − 𝜅) is increasing in 𝜅. When

𝑝𝐻 > 𝑝 + 𝜀, we have 𝑚(𝜅) = 𝜅(𝑝 + 𝜀) +Λ𝐻 (𝑝𝐻 − 𝑝 − 𝜀). Moreover, by the assumption of Λ𝐿 𝑝𝐿 +Λ𝐻 𝑝 > 𝑇 ,

we have Λ𝐿 𝑝𝐿 + Λ𝐻 (𝑝 + 𝜀) > 𝑇 𝑝

𝑝+𝜀 ⇔ Λ𝐻 𝑝𝐻 − Λ𝐻 (𝑝 + 𝜀) < Λ𝑝 − 𝑇 𝑝

𝑝+𝜀 ⇔ Λ𝐻 (𝑝𝐻 − 𝑝 − 𝜀) < Λ𝑝 − 𝑇 𝑝

𝑝+𝜀 . So

𝑚(0) ≤ Λ𝐻 (𝑝𝐻 − 𝑝 − 𝜀) < 𝛿𝜀 𝑝 = 𝑣𝜋𝑅 (0). Then we define 𝛿𝐻 , such that 𝑣𝜋𝑅 (𝛿𝐻 ) = 𝑚(𝛿𝐻 ), where 𝛿𝐻 > 0 and

𝑣𝜋𝑅 (𝜅) > 𝑚(𝜅) for 𝜅 < 𝛿𝐻 .

By the characterization of 𝑥 𝑗 (𝑡) in (5) and (4), we have

if𝜋𝑅 =
max{𝑥 𝜋𝑅 (0), 𝑥 𝜋𝑅 (𝑇)}

𝑤̄𝜋𝑅
=

max{𝜅𝑝, 𝑣𝜋𝑅 }
𝑤̄𝜋𝑅

,

if𝜋𝐻 =
max{𝑥 𝜋𝐻 (0), 𝑥 𝜋𝐻 ((Λ𝐻 − 𝜅) (𝑝 + 𝜀)), 𝑥 𝜋𝐻 (𝑇)}

𝑤̄𝜋𝐻

=

max{𝜅𝑝𝐻 ,
(
𝜅𝑝𝐻 + 𝑝𝐻−𝑝𝐿

𝑝+𝜀 (Λ𝐻 − 𝜅) (𝑝 + 𝜀) −
(
1− 𝑝𝐿

𝑝+𝜀

)
(Λ𝐻 − 𝜅) (𝑝 + 𝜀)

)+
, 𝑣𝜋𝐻 }

𝑤̄𝜋𝐻

=
max{𝜅𝑝𝐻 + [(𝑝𝐻 − 𝑝 − 𝜀) (Λ𝐻 − 𝜅)]+ , 𝑣𝜋𝐻 }

𝑤̄𝜋𝐻
=

max{𝑚(𝜅), 𝑣𝜋𝐻 }
𝑤̄𝜋𝐻

.

From the proof of the second part of Proposition 2 above, we know that for all 𝜅 ≥ 𝜅1, 𝑤̄𝜋𝑅 < 𝑤̄𝜋𝐻 . Moreover,

for 𝜅 ≤ 𝛿𝐻 , we have 𝑣𝜋𝑅 (𝜅) ≥ 𝑚(𝜅). From the first part of Proposition 2, 𝑣𝜋𝑅 ≥ 𝑣𝜋𝐻 . Therefore, if𝜋𝑅 > if𝜋𝐻 for

𝜅1 ≤ 𝜅 ≤ 𝛿𝐻 . That is, there exist 0 ≤ 𝜅1 ≤ 𝜅1 < 𝛿𝐻 ≤ 𝜅1 ≤ 𝜅𝜀 , such that for any 𝜅 ∈ [𝜅1, 𝜅1], if𝜋𝐻 < if𝜋𝑅 .

(b) Similarly, we define 𝛿𝐿 such that 𝑣̃𝜋𝐿 (𝛿𝐿) = 𝛿𝐿 𝑝. Since 𝑣̃𝜋𝐿 (0) > 0, we have 𝛿𝐿 > 0 and 𝑣̃𝜋𝐿 (𝜅) > 𝜅𝑝 for 𝜅 < 𝛿𝐿 .

By (6), we have

if𝜋𝐿 =
max{𝜅𝑝𝐿 , 𝑣𝜋𝐿 }

𝑤̄𝜋𝐿
.

Moreover, we know that 𝑣𝜋𝑅 ≤ 𝑣𝜋𝐿 and for all 𝜅 ≥ 𝜅2, 𝑤̄𝜋𝐿 < 𝑤̄𝜋𝑅 . Therefore, with 𝑣𝜋𝑅 ≥ 𝑣̃𝜋𝐿 (𝜅) > 𝜅𝑝, we

have if𝜋𝐿 > if𝜋𝑅 for 𝜅2 ≤ 𝜅 ≤ 𝛿𝐿 . That is, there exist 0 ≤ 𝜅2 ≤ 𝜅2 < 𝛿𝐿 ≤ 𝜅2 ≤ 𝜅𝜀 , such that for any 𝜅 ∈ [𝜅2, 𝜅2],
if𝜋𝑅 < if𝜋𝐿 .

Proof of Proposition 3 Since 𝑣𝜋𝑅 = max{(𝛿𝜀 − 𝜅)𝑝, 𝛿𝑝}, we have 𝑑𝑣𝜋𝑅

𝑑𝜅
≤ 0.

Proof of part 1 of the proposition. We consider the following two cases.

(a) Case 1: Λ < 2𝑇
𝑝

.

(i) 𝜅𝑅 ≥ 𝛿⇔ (2𝑇 −Λ𝑝)𝜀 ≥ (Λ𝑝 −𝑇)𝑝⇔ 𝜀 ≥ (Λ𝑝−𝑇 ) 𝑝
2𝑇−Λ𝑝

=
𝛿𝑝2

2𝑇−Λ𝑝
.

Then for 𝜅 ≥ 𝜅𝑅 ≥ 𝛿, we have 𝑣𝜋𝑅 = 𝛿𝑝, 𝑤̄𝜋𝑅 = 1
2Λ𝑝

((𝜅𝑝 + 𝛿𝑝 − (𝛿𝜀 − 𝜅)𝑝)𝑇 + (𝑣𝜋𝑅 )2), and if𝜋𝑅 =
𝜅 𝑝

𝑤̄𝜋𝑅
.

Then 𝑑𝑣𝜋𝑅

𝑑𝜅
= 0, 𝑑𝑤̄𝜋𝑅

𝑑𝜅
= 𝑇

Λ
> 0, and 𝑑if𝜋𝑅

𝑑𝜅
=

𝑝

𝑤̄𝜋𝑅
− 𝜅 𝑝𝑇

(𝑤̄𝜋𝑅 )2Λ
< 0 ⇔ 𝜀 >

𝛿2 𝑝2

Λ(2𝑇−Λ𝑝) . Moreover, 𝑑if𝜋𝑅
𝑑𝑤̄𝜋𝑅

=

𝑑if𝜋𝑅
𝑑𝜅

𝑑𝜅
𝑑𝑤̄𝜋𝑅

< 0 and 𝑑2if𝜋𝑅
𝑑 (𝑤̄𝜋𝑅 )2 =

𝑑 (𝑑if𝜋𝑅 /𝑑𝑤̄𝜋𝑅 )
𝑑𝜅

𝑑𝜅
𝑑𝑤̄𝜋𝑅

=
2𝑝

(𝑤̄𝜋𝑅 )2

(
𝜅

𝑤̄𝜋𝑅
− Λ

𝑇

)
> 0 ⇔ 𝜀 >

𝛿2 𝑝2

Λ(2𝑇−Λ𝑝) , which is true

as 𝛿2 𝑝2

Λ(2𝑇−Λ𝑝) <
𝛿𝑝2

2𝑇−Λ𝑝
.

(ii) 𝜅𝑅 < 𝛿⇔ 𝜀 <
𝛿𝑝2

2𝑇−Λ𝑝
.

For 𝜅 ≥ 𝛿, same as above, we have 𝑑𝑣𝜋𝑅

𝑑𝜅
= 0, 𝑑𝑤̄𝜋𝑅

𝑑𝜅
> 0, and 𝑑if𝜋𝑅

𝑑𝜅
< 0 ⇔ 𝜀 >

𝛿2 𝑝2

Λ(2𝑇−Λ𝑝) . Moreover,
𝑑if𝜋𝑅
𝑑𝑤̄𝜋𝑅

< 0 and 𝑑2if𝜋𝑅
𝑑 (𝑤̄𝜋𝑅 )2 > 0 ⇔ 𝜀 >

𝛿2 𝑝2

Λ(2𝑇−Λ𝑝) .

And for 𝜅 where 𝜅𝑅 ≤ 𝜅 < 𝛿, we have 𝑣𝜋𝑅 = 𝛿𝑝, 𝑤̄𝜋𝑅 = 1
2Λ𝑝

((𝜅𝑝 + 𝛿𝑝 − (𝛿𝜀 − 𝜅)𝑝)𝑇 + (𝑣𝜋𝑅 )2), and

if𝜋𝑅 =
𝛿𝑝

𝑤̄𝜋𝑅
. Then 𝑑𝑣𝜋𝑅

𝑑𝜅
= 0, 𝑑𝑤̄𝜋𝑅

𝑑𝜅
= 𝑇

Λ
> 0, and 𝑑if𝜋𝑅

𝑑𝜅
< 0. Moreover, 𝑑if𝜋𝑅

𝑑𝑤̄𝜋𝑅
= 𝑑if𝜋𝑅

𝑑𝜅
𝑑𝜅

𝑑𝑤̄𝜋𝑅
= − 𝛿𝑝

(𝑤̄𝜋𝑅 )2 < 0

and 𝑑2if𝜋𝑅
𝑑 (𝑤̄𝜋𝑅 )2 =

𝑑 (𝑑if𝜋𝑅 /𝑑𝑤̄𝜋𝑅 )
𝑑𝜅

𝑑𝜅
𝑑𝑤̄𝜋𝑅

> 0.
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(b) Case 2: Λ ≥ 2𝑇
𝑝

.

(i) 𝜅𝑅 < 𝛿 ⇔ (2𝑇 − Λ𝑝)𝜀 < (Λ𝑝 − 𝑇)𝑝, which is true as (2𝑇 − Λ𝑝)𝜀 < 0 < (Λ𝑝 − 𝑇)𝑝. Then for 𝜅 where

𝜅𝑅 ≤ 𝜅 < 𝛿, we have 𝑣𝜋𝑅 = 𝛿𝑝, 𝑤̄𝜋𝑅 = 1
2Λ𝑝

((𝜅𝑝 + 𝛿𝑝 − (𝛿𝜀 − 𝜅)𝑝)𝑇 + (𝑣𝜋𝑅 )2), and if𝜋𝑅 =
𝛿𝑝

𝑤̄𝜋𝑅
. Then

𝑑𝑣𝜋𝑅

𝑑𝜅
= 0, 𝑑𝑤̄𝜋𝑅

𝑑𝜅
= 𝑇

Λ
> 0, and 𝑑if𝜋𝑅

𝑑𝜅
< 0. Moreover, 𝑑if𝜋𝑅

𝑑𝑤̄𝜋𝑅
= 𝑑if𝜋𝑅

𝑑𝜅
𝑑𝜅

𝑑𝑤̄𝜋𝑅
= − 𝛿𝑝

(𝑤̄𝜋𝑅 )2 < 0 and 𝑑2if𝜋𝑅
𝑑 (𝑤̄𝜋𝑅 )2 =

𝑑 (𝑑if𝜋𝑅 /𝑑𝑤̄𝜋𝑅 )
𝑑𝜅

𝑑𝜅
𝑑𝑤̄𝜋𝑅

> 0.

(ii) For 𝜅 ≥ 𝛿, similar as in Case 1, 𝑑if𝜋𝑅
𝑑𝜅

< 0 ⇔ (2𝑇 −Λ𝑝)𝜀 > 𝛿2 𝑝2

Λ
, which can not be true as Λ ≥ 2𝑇

𝑝
.

Therefore, there exist 0 ≤ 𝜅𝑙 < 𝜅𝑢 ≤ 𝜅𝜀 , such that for any 𝜅 ∈ [𝜅𝑙 , 𝜅𝑢], we have

𝑑𝑣𝜋𝑅

𝑑𝜅
≤ 0,

𝑑𝑤̄𝜋𝑅

𝑑𝜅
> 0,

𝑑if𝜋𝑅
𝑑𝜅

< 0, and
𝑑2if𝜋𝑅

𝑑 (𝑤̄𝜋𝑅 )2 > 0.

Proof of part 2 of the proposition. As 𝑣𝜋𝑅 = max{(𝛿𝜀 − 𝜅)𝑝, 𝛿𝑝}, we have that for 𝜀 < 𝜅 𝑝2

𝑇−𝜅 𝑝 := 𝜀𝑅, 𝑣𝜋𝑅 = 𝛿𝑝,

for 𝜀 ≥ 𝜀𝑅, 𝑣𝜋𝑅 = (𝛿𝜀 − 𝜅)𝑝. Therefore, 𝑑𝑣𝜋𝑅

𝑑𝜀
≥ 0.

Moreover, when 𝜅 > 0, for 𝜀 ≤ 𝜀𝑅, 𝑤̄𝜋𝑅 = 1
2Λ𝑝

(
2𝜅𝑝 − 𝑇 𝜀

𝑝+𝜀

)
𝑇 + (𝑣𝜋𝑅 )2

2Λ𝑝
. Then 𝑑𝑤̄𝜋𝑅

𝑑𝜀
= − 𝑇2

2Λ(𝑝+𝜀)2 < 0. Furthermore,

for 𝜀 ≤ 𝜀𝑅, if𝜋𝑅 =
max{ 𝛿𝑝,𝜅 𝑝}

𝑤̄𝜋𝑅
. Therefore, 𝑑if𝜋𝑅

𝑑𝜀
> 0. And 𝑑if𝜋𝑅

𝑑𝑤̄𝜋𝑅
= −max{ 𝛿𝑝,𝜅 𝑝}

(𝑤̄𝜋𝑅 )2 , 𝑑2if𝜋𝑅
𝑑 (𝑤̄𝜋𝑅 )2 =

𝑑 (𝑑if𝜋𝑅 /𝑑𝑤̄𝜋𝑅 )
𝑑𝜀

𝑑𝜀
𝑑𝑤̄𝜋𝑅

> 0.

Hence, for any fixed 𝜅 > 0, there exists 𝜀 ≥ 𝜀𝑅 > 0, such that for any 𝜀 ∈ [0, 𝜀], we have

𝑑𝑣𝜋𝑅

𝑑𝜀
≥ 0,

𝑑𝑤̄𝜋𝑅

𝑑𝜀
< 0,

𝑑if𝜋𝑅
𝑑𝜀

> 0, and
𝑑2if𝜋𝑅

𝑑 (𝑤̄𝜋𝑅 )2 > 0.


