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Even when human point forecasts are less accurate than data-based algorithm predictions, they can still help boost per-

formance by being used as algorithm inputs. Assuming one uses human judgment indirectly in this manner, we propose

changing the elicitation question from the traditional direct forecast (DF) to what we call the private information adjust-

ment (PIA): how much the human thinks the algorithm should adjust its forecast to account for the information that

only the human has. Based on a behavioral model, we theoretically prove that, when there is human random error in the

forecast, eliciting the PIA leads to more accurate predictions than eliciting the DF; however, this DF-PIA gap does not

exist for perfectly-consistent forecasters. The DF-PIA gap is increasing in the random error people make while incorpo-

rating public information (data that the algorithm has access to) but is decreasing in the random error that people make

while incorporating private information (data that only the human has access to). In controlled experiments with students

and Amazon Mechanical Turk workers, we find support for these hypotheses and demonstrate the flexibility to conduct

elicitation in multiple ways to enhance performance.

Key words: laboratory experiments, behavioral operations, random error, elicitation, forecasting, prediction, discretion,

expert input, private information, judgment, aggregation

1. Introduction
Because of increased access to data and advancements in machine-learning algorithms, a common opera-

tional improvement initiative is to replace human forecasters with data-driven prediction algorithms. For

example, in our motivating setting, a hospital needs surgery duration forecasts to schedule operating room

use, which costs $2,190 per hour on average (Childers and Maggard-Gibbons 2018). Using surgery duration

data from that hospital, Ibrahim and Kim (2019) showed that physicians’ mean absolute percent forecast

error was 33%, whereas algorithms based on available patient and surgery data reduced that error to 29%.

Nevertheless, even if humans are not better than algorithms head-to-head, their judgments can still help.

In the above example, the hospital could improve predictive accuracy even further to under 27% by using

the physicians’ forecasts as an input (along with the other data) to the algorithm. In other words, the best

forecasts often come not from replacing humans with algorithms, but from combining them.
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In this research, we ask the following question: If we know that we are going to use human judgment not

directly but indirectly in an algorithm, should we elicit something else besides point forecasts? If so, what

alternative information should we elicit, and why might it work better?

We theorize that the primary reason why humans add value to algorithms is that they have access to

private information that the algorithm does not have access to, for example, because it is not in the database

or is too unstructured to use in the algorithm. Therefore, we consider whether, rather than asking for a

human’s direct forecast (DF), it may be better to ask about her private information instead (even if we do

not know what this private information is ahead of time). Specifically, we propose the idea of eliciting the

private information adjustment (PIA)—how much the human thinks the algorithm should adjust its forecast

to account for the information that only the human has.

Using a stylized behavioral model (§2), we theorize that the PIA leads to more accurate predictions

than DF only if there is human random error. That is, from a predictive accuracy perspective, there is no

difference between eliciting the DF or the PIA if people are perfectly consistent in how they use information

to make a forecast. However, if they are inconsistent, then the PIA should help algorithms more than the DF.

Furthermore, the model sheds light on which environmental conditions would lead to greater differences in

performance. Namely, it shows that the PIA’s advantage, relative to DF, is larger when “public” data—the

data that the algorithm also has access to—is complicated for the human to process, but smaller when the

human’s private information is complicated to process instead.

To test these hypotheses regarding the difference in performance between DF and PIA, we conducted

controlled experiments in which we elicited human judgments for 50 simulated surgery durations based on

predictive data. We told our participants that the hospital’s algorithm had access to only some of the data

(“public information”), but the other data only the participant had access to (“private information”). In one

condition, we elicited judgment by asking for the participant’s DF for each surgery while, in the other, we

elicited their PIA for each surgery. Then, for each condition, we calibrated prediction algorithms using the

first 35 surgeries, and tested their predictive performance using the last 15 surgeries.

In Experiment 1 (§3), conducted with university students and replicated with Amazon Mechanical Turk

(MTurk) workers, we find that prediction algorithms performed significantly better when they had access

to the participants’ PIA as inputs as opposed to their DF – their average root mean squared error (RMSE)

in the test sets was 21% lower. In Experiment 2 (§4), we manipulate random error magnitudes by making

the public or private information more or less complex: subjects must aggregate multiple factors when

the information is complex, but are provided one equivalent factor when the information is not complex.

Consistent with our theoretical development, we find that the RMSE for PIA is 48% lower than for DF when

the public information is complex, but only 6% lower than DF when the private information is complex.
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In Experiment 3 (§5), we explore a setting where the PIA is not numerical: We test whether a lower-effort

multiple choice version of the PIA question can enhance PIA’s performance and its advantage over DF.

Finally, in §6, we highlight opportunities for future research.

We contribute to three main bodies of research. Management science researchers have long recognized

the potential value in integrating human judgment with forecasting algorithms (see Bunn and Wright 1991,

Arvan et al. 2019 for reviews). The two most common integration approaches are to make judgmental

adjustments to an algorithm’s point forecast (e.g., see Carbone et al. 1983, Lim and O’Connor 1995, Fildes

et al. 2009, Sanders and Ritzman 2001) or to combine separate human and algorithm point forecasts (e.g.,

see Lawrence et al. 1986, Blattberg and Hoch 1990, Goodwin 2000). We contribute by examining a dif-

ferent human elicitation question from the point forecast. Notably, our proposed method is not equivalent

to judgmental adjustments because we use the PIA as an input for the prediction algorithm. In fact, in our

experiments, using PIA responses to adjust algorithm forecast outputs yields poor predictive performance.

A stream of behavioral operations management research studies the system design implications of human

random error. For example, the best way to design contracts (e.g., Su 2008, Ho and Zhang 2008), queues

(e.g., Huang et al. 2013), or auctions (e.g., Davis et al. 2014) changes once the system designer considers

human random error. Most closely related to our paper is Kremer et al. (2016). They show that human

random error causes eliciting human forecasts in a top-down fashion to be more effective in some environ-

ments, but bottom-up forecasting to be more effective in others. We contribute by showing how a forecasting

system’s elicitation design impacts performance once one considers human random error, even if it has no

effect without human random error.

Finally, researchers in judgment and decision making have made advancements in developing strategies

to improve human judgment accuracy. Perhaps the most well-known idea is to harness the “wisdom of

crowds” (e.g., see Surowiecki 2005) through averaging multiple peoples’ judgments. Interestingly, because

people are so inconsistent (Kahneman et al. 2016), even averaging multiple judgments by the same per-

son separated by time (Vul and Pashler 2008) or with a prompt to think differently (Herzog and Hertwig

2009) helps, albeit only about half as much as averaging two different people (Mannes et al. 2012). Most

closely related to our work in this stream is Palley and Soll (2019), who develop a new elicitation method

that improves the wisdom of crowds strategy by estimating the amount of shared information between indi-

viduals. Our elicitation strategy also seeks to improve an aggregation strategy by addressing the issue of

disentangling the shared information between the human and the algorithm.

2. Theory Development
We present simple models of rational (no random error) and behavioral (random error) forecasters. Then,

we characterize the performance of prediction models that use as inputs direct forecasts (DF) or private
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information adjustments (PIA). Finally, we use these results to motivate two hypotheses about whether and

how eliciting the PIA will be more effective than DF.

2.1. Surgery Duration Assumptions

We assume an actual surgery duration, Y , is a random variable defined by the linear model:

Y = v+
∑

i∈P∪I

wiXi + ε, (1)

where we separate the public factors, denoted by the index set P , from the private factors, denoted by the

index set I. In (1), ε is an error term, with E[ε] = 0, which represents true environmental random shocks i.e.,

random variations that are impossible to predict even with all public and private information. We assume

that ε and (Xi)i∈P∪I are mutually independent.

2.2. DF and PIA are Equivalent under Rational Forecasting

We define the DF and PIA for the rational forecaster as follows:

DF ∗ = v∗+
∑

i∈P∪I

w∗iXi and PIA∗ =
∑
i∈I

w∗iXi. (2)

In this rational model, we assume that v∗ and w∗i , for i ∈ P ∪ I, are deterministic, though not necessarily

known by the algorithm a priori . (Note, they can be any constants and are not necessarily “optimal”.) Define

the best fitting models of Y given the public factors and DF ∗ or PIA∗ using linear regression:

(Model-DF ∗) MDF∗ = α0 +
∑
i∈P

αiXi +βDF∗DF ∗, (3)

(Model-PIA∗) MPIA∗ = γ0 +
∑
i∈P

γiXi +βPIA∗PIA
∗. (4)

Then, the following proposition holds. We relegate the proofs of all propositions to the appendix.

PROPOSITION 1. Model-DF ∗ and Model-PIA∗ yield the same predictions.

That is, with rational (deterministic) forecasters, predicting surgery durations using DF as model inputs

yields the same predictions as using PIA as model inputs; the two elicitation methods are equivalent from

the algorithm’s perspective.

2.3. PIA Outperforms DF under Behavioral Forecasting

Next, we consider the following behavioral forecasting model for the DF and PIA:

DF b = vb +
∑

i∈P∪I

W b
i Xi and PIAb =

∑
i∈I

W b
i Xi. (5)

Here, we assume that W b
i are random variables with E[W b

i ] = w̄b
i and Var[W b

i ]> 0. We also assume that

W b
i and Xi are all mutually independent, for i∈P ∪I. In this way, in contrast to the rational model in (2),
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the behavioral model in (5) captures inconsistencies or random error in assigning weights to each factor.

One can interpret these random weights as capturing randomness in a variety of cognitive processes, such

as in the encoding of information, memory retrieval, aggregation of multiple factors, or the translation from

one domain to another.

Define the best fitting models of Y given the public factors and DF b or PIAb using linear regression:

(Model-DF b) MDFb = α0 +
∑
i∈P

αiXi +βDFbDF b, (6)

(Model-PIAb) MPIAb = γ0 +
∑
i∈P

γiXi +βPIAbPIAb. (7)

In contrast to the equivalence result in Proposition 1 for the rational model, the following proposition

demonstrates the benefit of eliciting PIA compared to eliciting DF under the behavioral model.1

PROPOSITION 2. The mean squared error (MSE) for predictions under Model-DF b is strictly larger

than that under Model-PIAb , i.e., E[(Y −MDFb )2]>E[(Y −MPIAb )2].

The intuition is that, from the algorithm’s perspective, the value of the human input is the private

information—the algorithm already has the public information. The algorithm can infer the private informa-

tion equally well from DF or PIA responses without human random error. However, when there is human

random error, the algorithm can more accurately infer the private information from the PIA. Based on this

result, we formulate our first hypothesis.

Hypothesis 1 All else equal, a prediction model that is calibrated using DF yields less accurate predictions

than a prediction model that is calibrated using PIA.

2.4. The DF-PIA Gap Magnitude Depends on Random Error Location

Proposition 2 establishes our main result that, because of human random errors, using PIA yields more

accurate predictions than using DF. We now investigate how the “location” of these random errors (i.e.,

whether they occur incorporating public versus private factors) affects the performance difference between

DF and PIA. To do so, we study the behavior of the DF-PIA gap, which we define as the difference in the

MSEs from Proposition 2, E[(Y −MDFb )2]−E[(Y −MPIAb )2].

Random Error Incorporating Public Factors. To examine the effect of random error when incorporating

public factors on the DF-PIA gap, we consider two cases that are identical except for the degree of variability

in W b
i for i∈P . Specifically, we define W̃ b

i to be a mean preserving spread of W b
i (Rothschild and Stiglitz

1970). The following result establishes that increasing the variability in how people incorporate public

factors increases the DF-PIA gap:

1 Note that all propositions hold for both MSE and RMSE; we use RMSE to report our experiment results in §3–5.
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PROPOSITION 3. The DF-PIA gap is larger when W̃ b
i is used in (5), for i∈P , instead of W b

i .

The idea behind Proposition 3 is as follows. Model-PIAb remains the same when we add variability to

W b
i , i∈P because PIA responses are unaffected by the random error incorporating public factors. However,

Model-DF b is less accurate when W̃ b
i is used instead of W b

i , i ∈ P . DF responses are more variable when

W̃ b
i is used, which makes it harder for the algorithm to learn the private factors. Combining these two

observations implies that the DF-PIA gap increases.

Figure 1 shows the results from numerical simulations (see Appendix B for details). The left figure

corresponds to Proposition 3. It varies the standard deviation of the public factor random weight, holding

constant the standard deviation of the private factor random weight. Observe that the DF-PIA gap increases

with the variability in the public factor weight because the RMSE associated with Model-PIAb remains

constant while the RMSE associated with Model-DF b increases.

Figure 1 Numerical Simulation Illustrations of Propositions 3 and 4.

Random Error Incorporating Private Factors. We now turn to examining the effect of random error

incorporating private factors on the DF-PIA gap. We proceed as above, by considering two cases that are

identical except for the degree of variability in W b
i for i∈ I. We have:

PROPOSITION 4. The DF-PIA gap is smaller when W̃ b
i is used in (5) for i∈ I instead of W b

i .

In contrast to Proposition 3, Proposition 4 shows that adding variability to how people incorporate private

factors reduces the DF-PIA gap. Both Model-PIAb and Model-DF b lose accuracy as we add variability to

W b
i , i ∈ I. However, the loss is more dramatic for Model-PIAb . PIA’s advantage of more directly eliciting

the private information decreases as the random error incorporating private information increases.
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Figure 1 (right) is the corresponding figure for Proposition 4. Observe that the DF-PIA gap decreases in

the standard deviation of the private factor random error term because, while random error incorporating

the private factor increases the RMSE under both Model-DF b and Model-PIAb , the increase is steeper in

the latter.

Summary and Hypothesis. Proposition 3 shows that the DF-PIA gap increases in the random error incor-

porating public factors. Proposition 4 shows that the DF-PIA gap decreases in the random error incorpo-

rating private factors. Combined, they imply that the DF-PIA will be greater when adding random error

incorporating public information than when adding the same amount of random error incorporating private

information. Based on these results, we formulate our second hypothesis:

Hypothesis 2 The location of random error moderates the DF-PIA gap. Specifically,

(a) Settings that induce more random error incorporating public information increase the DF-PIA gap.

(b) Settings that induce more random error incorporating private information decrease the DF-PIA gap.

(c) Random error incorporating public information increases the DF-PIA gap more than random error

incorporating private information.

3. Experiment 1: Elicitation via Direct Forecast (DF) vs. Private Information
Adjustment (PIA)

Experiment 1 is a simple direct test of Hypothesis 1.

3.1. Experimental Design

3.1.1. Task. Participants first reviewed 30 historical surgeries, each with information about the number

of procedures, anesthesia complexity score, and the resulting surgery duration. They then completed 50

rounds of surgery duration prediction. In each round, they were shown a new surgery’s number of proce-

dures and anesthesia complexity score. Then, they were asked a question about predicting its duration.

3.1.2. Conditions. Subjects were randomly assigned to one of two conditions: direct forecast (“DF”)

versus private information adjustment (“PIA”). The only difference between these two conditions is that, in

each of the 50 rounds, DF participants answered the question: “What is your forecast for the duration of

this surgery? I think this surgery duration will be minutes.”, whereas PIA participants answered the

question: “The hospital system only has the first piece of information about this surgery—the number of

procedures. You have additional information. To account for your additional information, how would you

advise the hospital system to adjust its forecast for the duration of this surgery? I would advise the hospital

system to increase/decrease (choose one) its forecasted surgery duration by minutes.” See Appendix,

Figure D.1 for screenshots.
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3.1.3. Simulating Surgery Duration. We used the following equation to simulate surgery durations:

Ys = 60 + 20XP
s + 10XI

s + εs. Here, Ys is the duration of surgery s, XP
s denotes the number of proce-

dures, an integer-valued public factor that has a uniform distribution between 1 and 10, inclusive, and XI
s

denotes the anesthesia complexity score, a private factor that has a uniform distribution between −5 and 5.

Finally, εs follows a normal distribution with mean 0 and standard deviation 5. All participants observed the

same 30 simulated historical surgeries. However, each participant observed a unique sequence of randomly-

generated surgeries for their 50 prediction rounds.

3.1.4. User Interface and Instructions. We programmed the user interface using the online software

SoPHIE (Hendriks 2012). After written instructions describing the task, participants were required to pass

a three-question comprehension test before starting the experiment. They could review the instructions and

retake the test until they answered all questions correctly. See Appendix, Figure D.2 for full instructions.

3.1.5. Pre-registration. For all experiments, we set our target sample sizes, exclusion criteria, and

analysis plans a priori. We pre-registered to exclude participants who (1) did not complete the experiment

or (2) put the same answer more than 90% of the time. We also pre-registered our dependent variable and

analyses. We calibrate prediction algorithms using data from the participants’ train set (first 35 rounds),

then use the algorithms to generate predictions on the test set (last 15 rounds). Our performance criterion is

the root mean squared error (RMSE) of the predictions generated on the test set. The full pre-registration

document for Experiment 1 is available at https://aspredicted.org/blind.php?x=3e427n.

3.2. Results

3.2.1. Participants and Responses Summary Statistics. Undergraduate and graduate students at a

large research university in the US were invited to participate through a behavioral laboratory subject pool

recruitment system. Each participant received a $10 electronic gift card for completing the online study.

A total of 120 students participated. Following our exclusion criteria, we removed 8 participants who did

not complete the experiment, leaving 112 for analysis (56 in each condition). Among the 112 participants,

75% were female, 88% were 18 to 24 years old and 12% were 25 to 34 years old. The average of mean

response was 152.6 minutes (SD 30.8) in the DF condition, and 12.1 minutes (SD 23.7) in the PIA condition.

3.2.2. Algorithm Calibration and Prediction Accuracy Calculation. For each condition, we used the

number of procedures, actual surgery duration, and participant response from all participants’ first 35 rounds

to calibrate prediction algorithms for surgery duration. The pre-registered linear regression model included

participant dummies, number of procedures interacted with participant dummies, and participant response

interacted with participant dummies. Table D.1 in the Appendix summarizes the prediction algorithms cal-

ibrated for each condition. We used the calibrated prediction algorithms to generate the predictions, Ŷs, for

https://aspredicted.org/blind.php?x=3e427n
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each surgery s in the last 15 rounds of each participant. We then computed RMSE =
√

1
15

∑15

s=1(Ys− Ŷs)2

for each participant.

3.2.3. Testing Hypothesis 1. The average RMSE (averaged across all participants) was 22.4 (SD 6.3)

in the DF condition and 17.8 (SD 7.6) in the PIA condition; see Figure 2(a). This difference of 4.6 is

significant (p= 0.0008) and represents a 21% decrease. This result supports Hypothesis 1.

Figure 2 Experiment 1: Performance Comparison.
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model.

3.2.4. Other Benchmarks. Figure 2(a) also shows the performance of three other benchmarks:

“DF-As is” corresponds to using participant DF condition responses without any algorithms. Doing so

results in an average RMSE of 46.8 (SD 24.5), significantly worse than when we use participant responses

as inputs to algorithms.

“XP only” corresponds to using only the public information in the algorithm, without the use of any

participant responses. Across the 112 participants, such an algorithm leads to an average RMSE of 29.3

(SD 3.5)—an improvement over “DF-As is” even though participants had access to the private information,

in addition to the public information. However, it is worse than the average RMSE of both the DF condition

(p < 0.0001) and the PIA condition (p < 0.0001). In other words, participant responses added predictive

value in the experiment.

Lastly, “XP and XI” corresponds to allowing prediction algorithms to directly observe the private infor-

mation XI , and include it in prediction algorithms. In that sense, it is a benchmark for the best performance

possible. Doing so results in an average RMSE across the 112 participants of 4.9 (SD 1.1).
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3.2.5. Mechanism Evidence. The theorized mechanism driving Hypothesis 1 is that PIA responses

help the algorithm account for the private information better than the responses from the DF condition. To

examine this mechanism, we calculate the correlation of the PIA responses withXI and compare them with

the correlation of the DF responses with XI (after taking out the effect of XP ).

Naturally, because the PIA asks directly about the private information, the correlation between XI and

response was lower in the DF condition than in the PIA condition (0.39 versus 0.74). Next, we consider the

correlation between XI and R, where we define R as the residual of participant response after regressing

it on XP . That is, we take out the effect of public factor from each response to construct R. Note that if

participants did not suffer from random error, then R would be perfectly correlated with XI in both DF and

PIA. In contrast, we find it is less than 1 in both conditions. However, it is significantly higher in the PIA

condition than in the DF condition (0.76 versus 0.62, p= 0.0008). In other words, PIA responses provide

better information about XI than DF responses.

Figure 2(b) illustrates the predictive accuracy versus the correlation value above, for each participant. As

expected, higher correlation between XI and R leads to better prediction performance. There are more par-

ticipants with high correlation in the PIA condition than in the DF condition, which contributes to the better

performance of the PIA condition overall. The red “x” marks indicate the hypothetical perfect-rationality

benchmark with no random error for each participant, which yields perfect correlation for both DF and PIA.

The deviation of the PIA and DF dots from the red marks illustrate the effect of human random error in

participant responses.

3.3. MTurk Replication

We replicated the same experiment with MTurk workers. See https://aspredicted.org/blind.

php?x=yv2vs7 for the pre-registration document. While, overall, the predictions from the experiment

with MTurk workers were less accurate, the between-condition results replicated, providing evidence of

robustness across different populations. Appendix C provides details on the replication as well as a com-

parison between the performances of university students and MTurk workers.

3.4. Discussion

Consistent with Hypothesis 1, Experiment 1 provides evidence that eliciting the PIA information instead of

DF leads to better prediction algorithm performance. Participant responses, after the effect of public factor

is taken out, are more correlated with the private factor. This tighter relationship helps prediction algorithms

to incorporate private information, leading to better predictive performance. These results were replicated

across university students and MTurk workers.

https://aspredicted.org/blind.php?x=yv2vs7
https://aspredicted.org/blind.php?x=yv2vs7
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4. Experiment 2: Manipulating Information Complexity of Public vs. Private
Factors

Experiment 2 was designed to test Hypothesis 2 on how the DF-PIA gap established in Experiment 1 is

moderated by random error in incorporating public versus private factors. In addition, it provides a replica-

tion test of Hypothesis 1 using different surgery duration equations.

4.1. Experimental Design

The task was similar to that in Experiment 1. However, we changed the surgery duration equation, and

we varied the number of factors by condition. We conjectured that greater information complexity induces

higher random error. Therefore, we created higher complexity to induce more human random error by

requiring that subjects aggregate multiple factors. Otherwise, to create lower complexity to induce less

random error, we automatically pre-aggregated multiple factors into a single representative factor for the

participant.

Specifically, in the Baseline case we pre-aggregated information so that there is only one public and

one private factor as in Experiment 1. However, we required that participants account for two public fac-

tors in the Public Info Complex case, or two private factors in the Private Info Complex case. Thus, the

experiment was a 2 (DF, PIA) by 3 (Public Info Complex, Private Info Complex, Baseline) between-subject

experimental design.

The equations below show the underlying model we used for all conditions and the pre-aggregations we

constructed to manipulate complexity by condition:

Ys = 150 + 10XP1
s + 10XP2

s + 10XI1
s + 10XI2

s + εs (Underlying Model)

= 150 + 10XP1
s + 10XP2

s + (50 + 20XI
s ) + εs (Public Info Complex)

= 150 + (50 + 20XP
s ) + 10XI1

s + 10XI2
s + εs (Private Info Complex)

= 150 + (50 + 20XP
s ) + (50 + 20XI

s ) + εs (Baseline)

Here, XP1
s and XP2

s represent the two public factors. In the experimental task, they are the “procedure

set-up requirements” and the “procedure complexity score,” respectively. Symmetrically, XI1
s and XI2

s

represent the two private factors. In the experimental task, they are the “anesthesia set-up requirements”

and the “anesthesia complexity score,” respectively. The random generation process for public and private

factors was symmetric. For every surgery s,XP1
s andXI1

s were uniform random integers between 0 and 10,

inclusive.XP2
s andXI2

s were uniform random numbers between−5 and 5 (rounded to the nearest tenth). We

set XP
s = (XP1

s − 5)/2 +XP2
s /2 and XI

s = (XI1
s − 5)/2 +XI2

s /2, which establishes the above equalities.

In the experimental task, they are a generic “procedure score” and “anesthesia score,” respectively. The pre-

registration document for Experiment 2 is available at https://aspredicted.org/blind.php?

x=9uq8dw.

https://aspredicted.org/blind.php?x=9uq8dw
https://aspredicted.org/blind.php?x=9uq8dw
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4.2. Results

4.2.1. Participants, Participant Responses, and Prediction Algorithm. MTurk workers who were

located in the US, had a Human Intelligence Task (HIT) approval rate of 99% or higher, and had 100 or more

HITs approved, were qualified to participate in the experiment. Participants who completed the experiment

were paid $2 for participation. A total of 480 MTurk workers participated. Following the pre-registered

exclusion criteria, we removed 174 individuals who did not complete the experiment and 54 participants

who failed to correctly answer a four-question comprehension test on their first attempt. Among the 252

remaining participants, 42% were female, and 8% were 18 to 24 years old; 36%, 25 to 34; 31%, 35 to 44;

13%, 45 to 54; and 11%, 55 or over. Columns (1) and (2) of Table 1 provide the number of participants and

average response in each condition. We developed prediction algorithms in the same way as Experiment 1

(see §3.2.2). Table D.2 in Appendix summarizes the prediction algorithms.

Table 1 Experiment 2: Summary of experiment results.

Information Question (1) (2) (3) (4) (5) (6)

Type Type N Response Corr(XI , response) Corr(XI , R) RMSE of test set DF-PIA gap

Baseline DF 47 236.6 (30.7) 0.52 (0.21) 0.63 (0.25) 35.2 (13.9) 12.5***

PIA 42 4.0 (19.1) 0.76 (0.23) 0.79 (0.22) 22.8 (11.4)

Public info DF 41 241.9 (24.5) 0.28 (0.18) 0.42 (0.26) 41.2 (11.2) 19.9***

complex PIA 38 13.8 (33.9) 0.80 (0.27) 0.80 (0.27) 21.3 (14.0)

Private info DF 47 237.7 (31.6) 0.66 (0.15) 0.70 (0.15) 30.6 (8.8) 1.7

complex PIA 37 48.8 (46.1) 0.72 (0.17) 0.73 (0.17) 28.9 (7.0)

Note. Means and standard deviations (in parenthesis) are shown. XP is public factor and XI is private factor. In column (4), R
is defined as the residual of response after regressing it on XP . In column (6), DF-PIA gap is defined as the difference between the
mean RMSEs of DF and PIA conditions. Column (6) also shows DF-PIA gap’s statistical significance from a two-sample t-test for
difference of means. * p < 0.05, ** p < 0.01, *** p < 0.001.

4.2.2. Robustness of Hypothesis 1. Columns (5)-(6) of Table 1 summarize the prediction performance

in each of the six conditions. Consistent with Hypothesis 1, the average RMSE of all PIA participants was

32% lower than the average RMSE of all DF participants (35.4 versus 24.2, p < 0.0001). As shown in

column (6) of Table, 1, the DF-PIA gap was statistically significant at the 5% level in 2 of the 3 informa-

tion conditions. In §3.2.5, we found that better performance is associated with higher correlation between

participant response and XI—after the effect of XP in the responses are taken out. Columns (3) and (4) of

Table 1 provide the average correlation between XI and response and average correlation between XI and

R, defined as the residual of response after regressing it on XP . As expected, the correlations are higher in

the PIA conditions than in the DF conditions, which again provides mechanism evidence for Hypothesis 1.
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4.2.3. Testing Hypothesis 2. Hypothesis 2(a) predicts the DF-PIA gap to be greater under public-

information-complex conditions than under baseline conditions. Consistent with this hypothesis, the gap

was 19.9 under the public-information-complex conditions and 12.5 under the baseline conditions. This 7.4

difference was statistically significant (p= 0.036; see Table D.4).

Hypothesis 2(b) predicts the DF-PIA gap to be smaller under private-information-complex condi-

tions than under baseline conditions. Consistent with this hypothesis, the gap was 1.7 under the private-

information-complex conditions and 12.5 under the baseline conditions. This 10.8 difference was statisti-

cally significant (p= 0.002; see Table D.4).

Hypothesis 2(c) predicts the DF-PIA gap to be greater under public-information-complex conditions than

under private-information-complex conditions. Consistent with this hypothesis, the gap was 19.9 under

public-information-complex conditions and 1.7 under private-information-complex conditions. This 18.2

difference was statistically significant (p < 0.001; see Table D.4). These findings provide evidence that

the benefit of PIA over DF is greater when public information is complex, more so than when private

information is complex.

4.3. Discussion

In addition to replicating Hypothesis 1 under different simulation parameters and information variables,

Experiment 2 provided evidence that the location of random error matters in a manner consistent with

Hypothesis 2. Specifically, eliciting human judgment via PIA instead of DF is most helpful when there is

random error incorporating public information, but less helpful when there is random error incorporating

private information.

5. Experiment 3: Numeric vs. Multiple-Choice Responses
Because we use human judgments as inputs to algorithms, responses need not be in the same domain as the

ultimate forecast (in our case, minutes). Any linear transformation of DF and PIA responses defined in (5)

are equivalent from the algorithm’s perspective. This observation is practically relevant because it broadens

the range of possible formats that the system designer can use to elicit the PIA. A designer may search this

broader range of possibilities to try to reduce human random error, lower the effort required, and enhance

PIA’s performance.

The purpose of Experiment 3 is therefore to test whether Hypothesis 1 is robust even when the PIA

question is formatted as a non-numeric multiple choice question. We further conjecture that structuring the

PIA question in a way that reduces the cognition required to translate the private information into the domain

requested can potentially reduce random error incorporating the private information, leading to enhanced

PIA performance.
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5.1. Experimental Design

The experiment was similar to Experiment 1, but with the additional manipulation of a 5-point scale

multiple-choice question format for both DF and PIA. Thus, the experiment had a 2 answer types (numeric

or multiple choice) by 2 question types (DF or PIA) between-subject design.

Participants assigned to the Multiple choice-DF condition were asked: “I think this surgery duration will

be: a) a lot shorter than average, b) a little shorter than average, c) about average, d) a little longer than

average, e) a lot longer than average.” On the other hand, participants assigned to the Multiple choice-PIA

condition were asked: “Of the above two characteristics of this future surgery, the hospital system only

knows about the number of procedures. Compared to surgeries with the same number of procedures, I would

advise the hospital system that this surgery duration will be: a) a lot shorter than average, b) a little shorter

than average, c) about average, d) a little longer than average, e) a lot longer than average.”

We conjectured that even though the multiple-choice format can convey less precise information than the

numeric format, it may be cognitively easier (thereby reducing random error) for participants to translate

the private information (a score between -5 and 5) to this multiple choice format as opposed to attempt to

convert to minutes in the numeric format. The pre-registration document for Experiment 3 is available at

https://aspredicted.org/blind.php?x=mx2if3. 2

5.2. Results

5.2.1. Participants, Participant Response, and Prediction Algorithms. The MTurk worker qualifi-

cation and payment settings were the same as in Experiment 2 (see §4.2.1). A total of 200 MTurk workers

participated. Following the pre-registered exclusion criteria, we removed 30 individuals who did not com-

plete the experiment. Among the 170 remaining participants, 45% were female, 9% were 18 to 24 years

old; 45%, 25 to 34; 30%, 35 to 44; 13%, 9 to 54; and 6%, 55 or over. Columns (1) and (2) of Table 2 provide

the number of participants and the average response in each condition.

We developed prediction algorithms in the same way as Experiment 1 (see §3.2.2). As was pre-registered,

we used the first 20 rounds of each participant to develop prediction algorithms and the last 20 rounds to

evaluate prediction performance. Table D.3 in the Appendix summarizes the prediction algorithms.

5.2.2. Performance Comparison. Columns (5)-(6) of Table 2 summarize the prediction performance

of the four conditions. Consistent with Hypothesis 1, the results show robust support for the benefit of

eliciting human judgment via PIA over DF. The DF-PIA gap was 5.0 (p= 0.0121) in numeric conditions

and 8.6 (p= 0.0001) in multiple-choice conditions. The DF-PIA gap was directionally larger under multiple

2 There were a few other minor changes compared to Experiment 1. For example, each participant observed 20 historical surgeries
instead of 30, each participant completed 40 rounds instead of 50, and all participants observed the same sequence of surgeries.

https://aspredicted.org/blind.php?x=mx2if3
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Table 2 Experiment 3: Summary of experiment results.

Answer Question (1) (2) (3) (4) (5) (6)

Type Type N Response Corr(XI , response) Corr(XI , R) RMSE of test set DF-PIA gap

Numeric DF 46 159.9 (30.1) 0.30 (0.18) 0.52 (0.26) 28.4 (5.4) 5.0*

PIA 32 26.7 (29.2) 0.56 (0.35) 0.62 (0.33) 23.4 (11.6)

Multiple choice DF 44 11%, 15%, 24%, 28%, 21% 0.34 (0.27) 0.48 (0.31) 27.5 (6.2) 8.6**

PIA 48 17%, 15%, 21%, 28%, 19% 0.64 (0.37) 0.71 (0.35) 18.9 (12.5)

Note. Means and standard deviations (in parenthesis) are shown. For multiple choice conditions, the average percentage of each response is provided
in the following order: ‘a lot shorter than average’; ‘a little shorter than average’; ‘about average’; ‘a little longer than average’; and ‘a lot longer than
average.’ We coded ‘a lot shorter than average’ as 1, ‘a little shorter than average’ as 2, ‘about average’ as 3, ‘a little longer than average’ as 4, and ‘a
lot longer than average’ as 5 for correlation computation and prediction algorithm development. XP is public factor and XI is private factor. In column
(4), R is defined as the residual of response after regressing it on XP . In column (6), DF-PIA gap is defined as the difference between the mean RMSEs
of DF and PIA conditions. Column (6) also shows DF-PIA gap’s statistical significance from a two-sample t-test for difference of means. * p < 0.05, **
p < 0.01, *** p < 0.001.

choice, but the difference was not statistically significant (p= 0.2152; see Table D.5). In addition, columns

(3)-(4) of Table 2 show the average correlation between XI and the response and the average correlation

between XI and R, respectively. The higher correlation values between XI and R in PIA conditions show,

once more, strong mechanism evidence for Hypothesis 1.

The average RMSEs in numeric versus multiple choice conditions were not statistically different within

DF conditions (28.4 vs 27.5, p = 0.5016). Within the PIA conditions, RMSEs were directionally better

under multiple choice vs. numeric, although the difference was not statistically significant at the 5% level

(23.4 vs 18.9, p= 0.1138). The RMSEs in the best performing condition, Multiple choice-PIA, were sig-

nificantly better than the worst performing condition, Numeric-DF (18.9 vs 28.4, p < 0.0001).

5.3. Completion Times

The multiple-choice questions were less time-consuming for participants than the numeric questions. The

mean of each participant’s average time to complete one round was 16.1 seconds (SD 9.5) for numeric

conditions, which is significantly greater (p < 0.0001) than that for multiple choice conditions (Mean 10.8

seconds and SD 7.0). Within numeric conditions, there was no statistical difference in the mean of average

time to complete one round between DF and PIA conditions (15.3 seconds vs. 17.1 seconds; p= 0.4155).

Similarly, within multiple choice conditions, there was no statistical difference in the mean of average time

to complete one round between DF and PIA conditions (10.4 seconds vs. 11.1 seconds; p= 0.6410).

5.4. Discussion

Experiment 3 shows that the benefit of PIA over DF persists when using a 5-point multiple-choice scale

response that was not in the same domain as the ultimate predictions and was also less time-consuming

to answer. In this experiment, the multiple choice format also directionally outperformed the numerical

format. We do not interpret this pattern as evidence of the general superiority of the multiple choice format.
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Rather, we conclude that a fruitful strategy to enhance PIA’s performance is to investigate the type of

private information people have and how they store it in their memory, then format the question to make it

cognitively easier for the participant to translate from their private information to the question’s domain.

6. Conclusion
Our theoretical and experimental results suggest that there is opportunity to substantially improve predic-

tion algorithm performance by applying a new private information adjustment (PIA) elicitation method to

incorporate human judgment, instead of the traditional method of using direct forecast (DF). We formalize

how judgmental random error drives a difference between the performance of prediction models using DF

versus PIA (DF-PIA gap). We experimentally manipulate random error magnitude by varying the number

of factors subjects must aggregate to show that random error incorporating public information increases

the gap but random error incorporating private information decreases it. Finally, we demonstrate that the

flexibility to write the PIA question in a domain different from the forecast’s domain can be leveraged to

potentially further enhance its predictive performance.

Perhaps the most natural next question our results help raise is whether and to what extent the PIA

method leads to improvement in the field. Nevertheless, our exploration of the topic in this paper also

highlights the importance of addressing a broader set of research questions: How does the DF-PIA gap

behave for nonlinear machine learning algorithms? Beyond the number of factors, what other features of

the environment induce greater random error? What is the best way to write the PIA question for common

important forecasting contexts? How should system designers cope with situations where calibration data is

sparse? Are there algorithm aversion or incentive issues that need to be addressed before implementation?

We believe that, in addition to field work, laboratory experiments and behavioral models can help answer

these questions that are all important for driving improvement in practice.
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Appendix A: Proofs of Propositions

A.1. Proof of Proposition 1

Proof. To find the best fitting linear model of Y given Xi for i ∈ P and DF ∗, we need to solve the following

optimization problem:

min
α0,(αi)i∈P ,βDF∗

E[(Y −α0−
∑
i∈P

αiXi−βDF∗DF ∗)2]. (8)

Using the definition of DF ∗ in (2), (8) is equivalent to

min
α0,(αi)i∈P ,βDF∗

E[(Y − (α0 +βDF∗v
∗)−

∑
i∈P

(αi +βDF∗w
∗
i )Xi−

∑
i∈I

βDF∗w
∗
iXi)

2]. (9)

Similarly, to find the best fitting linear model of Y given Xi for i ∈ P and PIA∗, we need to solve the following

optimization problem:

min
γ0,(γi)i∈P ,βPIA∗

E[(Y − γ0−
∑
i∈P

γiXi−βPIA∗PIA
∗)2]. (10)

Using the definition of PIA∗ in (2), (10) is equivalent to

min
γ0,(γi)i∈P ,βPIA∗

E[(Y − γ0−
∑
i∈P

γiXi−
∑
i∈I

βPIA∗w
∗
iXi)

2]. (11)

We note that by letting

α0 +βDF∗v
∗ = γ0, αi +βDF∗w

∗
i = γi for i∈P, and βDF∗ = βPIA∗ ,

there is a one-to-one correspondence between all feasible solutions for problems (9) and (11). That is, the two opti-

mization problems are equivalent, and MDF∗ and MPIA∗ must yield the same predictions. �

A.2. Proof of Proposition 2

Proof. To find the best fitting linear model of Y given Xi for i ∈ P and DF b , we need to solve the following

optimization problem:

min
α0,(αi)i∈P ,βDFb

E[(Y − (α0 +βDF bvb)−
∑
i∈P

(αi +βDF bW b
i )Xi−

∑
i∈I

βDF bW b
i Xi)

2] (12)

Similarly, to find the best fitting linear model of Y given Xi for i ∈ P and PIAb , we need to solve the following

optimization problem:

min
γ0,(γi)i∈P ,βPIAb

E[(Y − γ0−
∑
i∈P

γiXi−
∑
i∈I

βPIAbW b
i Xi)

2]. (13)

We now show that for any feasible solution (ᾱ0, (ᾱi)i∈P , β̄DF b) for problem (12), we can construct a feasible

solution (γ̄0, (γ̄i)i∈P , β̄PIAb) for (13) that yields a strictly smaller objective value by letting:

γ̄0 = ᾱ0 + β̄DF bvb, γ̄i = ᾱi + β̄DF bw̄bi for i∈P, and β̄PIAb = β̄DF b , (14)

where we recall that E[W b
i ] = w̄bi .

Note that the objective value for problem (12) with (ᾱ0, (ᾱi)i∈P , β̄DF b) is:

E[(Y − (ᾱ0 + β̄DF bvb)−
∑
i∈P

(ᾱi + β̄DF bW b
i )Xi−

∑
i∈I

β̄DF bW b
i Xi)

2] (15)
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We define V and U as follows:

V = Y − γ̄0−
∑
i∈P

γ̄iXi−
∑
i∈I

β̄PIAbW b
i Xi and U =

∑
i∈P

(ᾱi + β̄DF bW b
i )Xi−

∑
i∈P

(ᾱi + β̄DF bw̄bi )Xi.

Then, utilizing (14) and the definitions of V and U , (15) can be written as follows:

E

(Y − (ᾱ0 + β̄DF bvb)−
∑
i∈P

(ᾱi + β̄DF bW b
i )Xi−

∑
i∈I

β̄DF bW b
i Xi +

∑
i∈P

(ᾱi + β̄DF bw̄bi )Xi−
∑
i∈P

(ᾱi + β̄DF bw̄bi )Xi

)2


= E

((Y − γ̄0−
∑
i∈P

γ̄iXi−
∑
i∈I

β̄PIAbW b
i Xi)− (

∑
i∈P

(ᾱi + β̄DF bW b
i )Xi +

∑
i∈P

(ᾱi− β̄DF bw̄bi )Xi)

)2


= E[(V −U)2]

= E[V 2] +E[U2]− 2E[V U ]

= E[V 2] +E[U2]

> E[V 2].

Note that in the fifth equation we use:

E[V U ] = E[E[V U |Xi ∈P]]

= E[E[V |Xi ∈P]E[U |Xi ∈P]]

= 0,

since E[U |Xi, i ∈ P] = 0 and U and V are conditionally independent on Xi ∈ P . Also note that E[U2] = Var[U ]> 0

since Var[W b
i ]> 0.

Notice that E[V 2] is the objective value for problem (13) with (γ̄0, (γ̄i)i∈P∪I , β̄PIAb). The reasoning above holds

for any feasible solution for problem (12). In particular, it holds for the optimal solution at the optimal value. Thus,

the mean squared error (MSE) for predictions under Model-DF b is strictly larger than that under Model-PIAb . �

A.3. Proof of Proposition 3

Proof. Recall that we defined W̃ b
i to be a mean preserving spread ofW b

i . By the definition of mean preserving spread

(Rothschild and Stiglitz 1970), we can let W̃ b
i =W b

i + Γi, where we assume E[Γi] = 0 and Var[Γi]> 0.

Note that when W̃ b
i is used in (5) for i ∈ P instead of W b

i , Model-PIAb does not change because PIA responses

are unaffected by the random error incorporating public factors. Thus, we only need to compare the performance of

Model-DF b when W̃ b
i is used in (5) for i∈P versus W b

i .

To find the best fitting linear model of Y given Xi for i ∈ P and DF b with W̃ b
i for i ∈ P , we need to solve the

following optimization problem:

min
α̃0,(α̃i)i∈P ,β̃DFb

E[(Y − (α̃0 + β̃DF bvb)−
∑
i∈P

(α̃i + β̃DF b(W b
i + Γi))Xi−

∑
i∈I

β̃DF bW b
i Xi)

2] (16)

Similarly, to find the best fitting linear model of Y given Xi for i∈P and DF b with W b
i for i∈P , we need to solve

the following optimization problem:

min
α0,(αi)i∈P ,βDFb

E[(Y − (α0 +βDF bvb)−
∑
i∈P

(αi +βDF b(W b
i ))Xi−

∑
i∈I

βDF bW b
i Xi)

2] (17)
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We now show that for any feasible solution (α̃0, (α̃i)i∈P , β̃DF b) for problem (16), we can construct a feasible

solution (α0, (αi)i∈P , βDF b) for (17) that yields a strictly smaller objective value by letting:

α̃0 + β̃DF bvb = α0 +βDF bvb, α̃i = αi for i∈P, and β̃DF b = βDF b . (18)

Let V = Y − (α0 +βDF bvb)−
∑

i∈P(αi+βDF bW b
i )Xi−

∑
i∈I βDF bW b

i Xi. Then, utilizing (18) and the definition

of V , the objective value for problem (16) with (α̃0, (α̃i)i∈P , β̃DF b) can be written as follows:

E

(Y − (α̃0 + β̃DF bvb)−
∑
i∈P

(α̃i + β̃DF b(W b
i + Γi))Xi−

∑
i∈I

β̃DF bW b
i Xi

)2


= E

(Y − (α0 +βDF bvb)−
∑
i∈P

(αi +βDF bW b
i )Xi−

∑
i∈I

βDF bW b
i Xi−

∑
i∈P

βDF bΓiXi

)2


= E[(V −
∑
i∈P

βDF bΓiXi)
2]

= E[V 2] +E[(
∑
i∈P

βDF bΓiXi)
2]− 2E[V ·

∑
i∈P

βDF bΓiXi]

> E[V 2],

since

E[V ·
∑
i∈P

βDF bΓiXi] = E[E[V
∑
i∈P

βDF bΓiXi

∣∣Xi ∈P]]

= 0,

because of conditional independence on Xi, i ∈ P , and the fact that E[Γi] = 0. Note that E[V 2] is the objective value

for problem (17) with (α0, (αi)i∈P , βDF b). �

A.4. Proof of Proposition 4

In the interest of algebraic tractability, we present here the proof for the case where there is one public factor and one

private factor only. It is straightforward to generalize the proof for cases with more than one public factor and one

private factor using the same approach.

Proof. We let X1 be a public factor and X2 be a private factor. By the definition of mean preserving spread

(Rothschild and Stiglitz 1970), we can let W̃ b
i =W b

i + Γi, where we assume E[Γi] = 0 and Var[Γi]> 0.

We first define a general optimization problem that finds the best fitting linear model of Y given X1 and responses

(DF or PIA):

Z(γ,W ) = min
α0,α1,β

E
[
Y − (α0 + γβvb)− (α1 + γβW b

1 )X1−βWX2

]2
. (19)

Here, α0 is the calibrated intercept, α1 is the coefficient for X1, and β is the coefficient for response (DF or PIA).

By choosing γ and W appropriately, we can define the following four models for different combinations of using DF

versus PIA and using W b
2 versus W̃ b

2 :

A=Z(1,W b
2 ) = min

α0,α1,β
E
[
Y − (α0 +βvb)− (α1 +βW b

1 )X1−βW b
2X2

]2
,

B =Z(0,W b
2 ) = min

α0,α1,β
E
[
Y −α0−α1X1−βW b

2X2

]2
,
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C =Z(1, W̃ b
2 ) = min

α0,α1,β
E
[
Y − (α0 +βvb)− (α1 +βW b

1 )X1−βW̃ b
2X2

]2
,

D=Z(0, W̃ b
2 ) = min

α0,α1,β
E
[
Y −α0−α1X1−βW̃ b

2X2

]2
,

where W̃ b
2 =W b

2 + Γ and E[Γi] = 0 and Var[Γi]> 0. In general:

We assume that the actual surgery duration Y is defined as follows:

Y = δ0 + δ1X1 + δ2X2 + ε.

We can then show:

Z(γ,W ) = min
α0,α1,β

E
[
Y − (α0 + γβvb)− (α1 + γβW b

1 )X1−βWX2

]2
= min
α1,β

Var
[
Y − γβvb− (α1 + γβW b

1 )X1−βWX2

]
= min
α1,β

Var
[
Y − (α1 + γβW b

1 )X1−βWX2

]
= min
α1,β

Var
[
ε+ (δ1−α1− γβW b

1 )X1 + (δ2−βW )X2

]
= min

λ1,β
Var
[
ε+ (λ1− γβW b

1 )X1 + (δ2−βW )X2

]
= min

λ1,β
Var
[
ε+λ1X1− γβW b

1X1 + δ2X2−βWX2

]
= min

λ1,β
Var[ε] +λ2

1Var[X1] + γ2β2Var[W b
1X1] + δ22Var[X2] +β2Var[WX2]

−2λ1γβCov(X1,W
b
1X1)− 2δ2βCov(X2,WX2)

=Var[ε] + δ22Var[X2]

+ min
λ1,β

[
λ2
1Var[X1] + γ2β2Var[W b

1X1] +β2Var[WX2]− 2λ1γβVar(X1)E[W b
1 ]− 2δ2βCov(X2,WX2)

]
=Var[ε] + δ22Var[X2]

+ min
β

[
min
λ1

[
Var[X1]λ2

1− 2γβVar(X1)E[W b
1 ]λ1

]
+β2(γ2Var[W b

1X1] + Var[WX2])− 2δ2βCov(X2,WX2)

]
=Var[ε] + δ22Var[X2]

+ min
β

[
γ2β2Var[W b

1X1]− γ2β2
E[W b

1 ]2Var[X1] +β2Var[WX2]− 2δ2βVar(X2)E[W ]

]
=Var[ε] + δ22Var[X2] + min

β

[(
γ2Var[W b

1X1]− γ2
E[W b

1 ]2Var[X1] + Var[WX2]

)
β2− 2

(
δ2Var(X2)E[W ]

)
β

]
=Var[ε] + δ22Var[X2]− (δ2Var(X2)E[W ])2

γ2Var[W b
1X1]− γ2E[W b

1 ]2Var[X1] + Var[WX2]

=Var[ε] + δ22Var[X2]− (δ2Var(X2)E[W ])2

γ2Var[W b
1 ]E[X2

1 ] + Var[WX2]
.

Note that E[W b
2 ] =E[W̃ b

2 ]. Denote M ≡ (δ2Var[X2]E[W b
2 ])2 = (δ2Var[X2]E[W̃ b

2 ])2. Then, we obtain:

(A−B)− (C −D) =(− (δ2Var(X2)E[W b
2 ])2

Var[W b
1 ]E[X2

1 ] + Var[W b
2X2]

+
(δ2Var(X2)E[W b

2 ])2

Var[W b
2X2]

)

− (− (δ2Var(X2)E[W̃ b
2 ])2

Var[W b
1 ]E[X2

1 ] + Var[W̃ b
2X2]

+
(δ2Var(X2)E[W̃ b

2 ])2

Var[W̃ b
2X2]

)

=(− M

Var[W b
1 ]E[X2

1 ] + Var[W b
2X2]

+
M

Var[W b
2X2]

)

− (− M

Var[W b
1 ]E[X2

1 ] + Var[W̃ b
2X2]

+
M

Var[W̃ b
2X2]

)

=
MVar[W b

1 ]E[X2
1 ]

(Var[W b
1 ]E[X2

1 ] + Var[W b
2X2])(Var[W b

2X2])
− MVar[W b

1 ]E[X2
1 ]

(Var[W b
1 ]E[X2

1 ] + Var[W̃ b
2X2])(Var[W̃ b

2X2])

=MVar[W b
1 ]E[X2

1 ]

[
1

(Var[W b
1 ]E[X2

1 ] + Var[W b
2X2])(Var[W b

2X2])
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− 1

(Var[W b
1 ]E[X2

1 ] + Var[W̃ b
2X2])(Var[W̃ b

2X2])

]
≥0,

where the last inequality follows from Var[W̃ b
2X2] = Var[(W b

2 + Γ)X2] = Var[W b
2X2] + Var[ΓX2]≥Var[W b

2X2]. �

Appendix B: Numerical Simulation Details

To construct Figure 1, we programmed a numerical simulation in R (script available from the authors upon request).

As in Experiment 1 (see §3), we simulated true surgery durations according to Ys = 60 + 20XP
s + 10XI

s + εs, where

XP
s are uniform random numbers between 1 and 10 (inclusive), XI

s are uniform random numbers between -5 and 5

(rounded to the tenths position), and εs are normally distributed with mean 0 and standard deviation 5.

We simulated the behavioral forecaster’s coefficients, W b
i s in (5), by adding normally distributed random error with

mean 0 to the rational forecaster’s coefficients, w∗i s in (2). Specifically, to create the left figure, we varied the standard

deviation of the normally distributed random error added to the behavioral forecaster’s coefficient for the public factor,

holding constant the standard deviation of the normally distributed random error added to the behavioral forecaster’s

coefficient for the private factor at 0.2. Similarly, for the right figure, we varied the standard deviation of the normally

distributed random error added to the behavioral forecaster’s coefficient for the private factor, holding constant the

standard deviation of the normally distributed random error added to the behavioral forecaster’s coefficient for the

public factor at 0.2.

For each point in the figure, the script executed the following steps:

1. Simulate 10,000 “actual” surgery durations.

2. Fit a linear model based on the simulated public and private factors. We used these coefficients to define the w∗i s

in (2) for a rational forecaster.

3. Calculate the rational forecaster’s DF and PIA values for each surgery based on these w∗i s.

4. Simulate the behavioral forecaster’s coefficients W b
i s in (5) for each surgery by adding normal random error with

mean 0 to the w∗i s.

5. Define the behavioral forecaster’s DF and PIA for each surgery based on these random W b
i s.

6. Split the dataset in half to define a train and test set.

7. Calibrate Model-DF ∗, Model-PIA∗, Model-DF b , and Model-PIAb in (3), (4), (6), and (7), respectively, using

the train set data.

8. Predict surgery durations onto the test set using these calibrated models.

9. Evaluate the RMSE for each model’s predictions on test set.
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Appendix C: Replicating Experiment 1 with MTurk Workers

The experiment was identical to Experiment 1 except for the study population; we recruited MTurk workers instead

of university students. The pre-registration document for this experiment is available at https://aspredicted.

org/blind.php?x=yv2vs7.

MTurk workers who were located in the US, had a Human Intelligence Task (HIT) approval rate of 99% or higher,

and had 100 or more HITs approved were qualified to participate in the experiment. Participants who completed the

experiment were paid $2 for participation. A total of 160 MTurk workers participated. Following the pre-registered

exclusion criteria, we removed 37 individuals who did not complete the experiment, leaving 123 participants for

analysis. Among the 123 participants, 47% were female and 9% were 18 to 24 years old; 43%, 25 to 34; 30%, 35 to

44; 11%, 45 to 54; and 7%, 55 or over.

Table C.1 provide a summary of experiment results and Table C.2 summarizes the prediction algorithms. The aver-

age RMSE was 26.0 in the DF condition and 22.5 in the PIA condition. The difference of 3.5 is significant (p= 0.0085)

and represents a 13% decrease. As in Experiment 1, the correlation between XI and R—defined as the residual

of participant response after regressing it on XP—was significantly higher in the PIA condition (0.61 versus 0.49,

p= 0.0191).

Table C.1 Replicating Experiment 1 with MTurk Workers: Summary of experiment results.

(1) (2) (3) (4) (5) (6)

Condition N Response Corr(XI , response) Corr(XI , R) RMSE of test set DF-PIA gap

Direct Forecast (DF) 68 154.0 (37.3) 0.29 (0.22) 0.49 (0.24) 26.0 (5.8) 3.5**

Private Information Adjustment (PIA) 55 20.2 (35.3) 0.57 (0.33) 0.61 (0.30) 22.5 (8.7)

Note. Means and standard deviations (in parenthesis) are shown. XP is public factor and XI is private factor. In column (4), R is defined as
the residual of response after regressing it on XP . In column (6), DF-PIA gap is defined as the difference between the mean RMSEs of DF and
PIA. Column (6) also shows DF-PIA gap’s statistical significance from a two-sample t-test for difference of means. * p < 0.05, ** p < 0.01, ***
p < 0.001.

Table C.2 Replicating Experiment 1 with MTurk workers: Prediction algorithms for each condition.

Coefficient for Coefficient for XP Coefficient for response

Condition participant dummies interacted w/ participant dummies interacted w/ participant dummies

Direct Forecast (DF) 40.6 (20.6) 12.1 (7.0) 0.4 (0.3)

Private Information Adjustment (PIA) 66.5 (14.4) 17.8 (3.3) 0.5 (0.4)

Table C.3 provides detailed summary statistics comparing students and MTurk workers in Experiment 1 and this

experiment. In addition, Table C.4 provides a more detailed comparison of RMSE. Although students and MTurk

workers did not differ in their responses or in their time to provide the responses, the comparison results suggest that

students were significantly better at our task than MTurk workers. An important takeaway, however, is that the benefit

of PIA over DF questions was robust across the two study populations.

https://aspredicted.org/blind.php?x=yv2vs7
https://aspredicted.org/blind.php?x=yv2vs7
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Table C.3 University students versus MTurk workers.

DF PIA

Student MTurk p-value Student MTurk p-value

N 56 68 56 55

Response 152.6 (30.8) 154.0 (37.3) 0.819 12.1 (23.7) 20.2 (35.3) 0.160

Corr(XI ,response) 0.39 (0.20) 0.29 (0.22) 0.018 0.74 (0.26) 0.57 (0.33) 0.003

Corr(XI ,R) 0.62 (0.20) 0.49 (0.24) 0.003 0.76 (0.24) 0.61 (0.30) 0.004

RMSE of test set 22.4 (6.3) 26.0 (5.8) 0.001 17.8 (7.6) 22.5 (8.7) 0.003

Average response time (seconds) 10.2 (6.4) 10.7 (8.3) 0.692 12.5 (9.3) 13.2 (7.5) 0.692

Note. Mean, standard deviation (in parentheses), and p-value from independent-samples t-test are reported.

Table C.4 RMSE comparison of university students versus MTurk

workers.

(1)

Root Mean Squared Error

Participant type (Base is Students)

MTurk workers 3.67∗∗ (1.28)

Question type (Base is DF conditions)

PIA conditions -4.56∗∗∗ (1.35)

Interaction effects (Base is Student × PIA condition)

MTurk × PIA 1.04 (1.86)

Constant 22.36∗∗∗ (0.95)

N 235

R2 0.15

Note. Columns (1) is a linear regression model with RMSE as the dependent variable. + p <
0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Appendix D: Additional Tables and Figures

Figure D.1 Experiment 1: Interface for the two conditions.

(a) Direct forecast (DF) condition

(b) Private information adjustment (PIA) condition
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Figure D.2 Experiment 1 Instructions.
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Table D.1 Experiment 1: Prediction algorithms for each condition.

Coefficient for Coefficient for XP Coefficient for response

Condition participant dummies interacted w/ participant dummies interacted w/ participant dummies

Direct Forecast (DF) 34.5 (20.1) 10.8 (6.4) 0.5 (0.2)

Private Information Adjustment (PIA) 62.6 (10.5) 18.4 (2.8) 0.7 (0.4)

Table D.2 Experiment 2: Prediction algorithms for each condition.

Coefficient for Coefficient for XP Coefficient for response

Information type Question type participant dummies interacted w/ participant dummies interacted w/ participant dummies

Baseline DF 110.6 (73.6) 10.9 (5.7) 0.6 (0.3)

PIA 247.7 (5.8) 18.6 (6.4) 0.9 (0.7)

Public info complex DF 77.9 (88.3) 3.0 (4.6), 4.7 (4.8) 0.7 (0.4)

PIA 197.6 (9.6) 9.7 (1.8), 9.4 (1.9) 1.1 (0.7)

Private info complex DF 108.1 (81.0) 14.5 (4.9) 0.6 (0.4)

PIA 221.6 (20.2) 20.4 (4.4) 0.8 (0.6)

Table D.3 Experiment 3: Prediction algorithms for each condition.

Coefficient for Coefficient for XP Coefficient for response

Answer type Question type participant dummies interacted w/ participant dummies interacted w/ participant dummies

Numeric DF 27.8 (20.4) 8.7 (10.0) 0.6 (0.4)

PIA 67.2 (13.2) 16.9 (4.4) 0.7 (0.6)

Multiple choice DF 20.0 (35.8) 15.2 (5.9) 19.5 (18.3)

PIA 7.9 (32.8) 17.5 (5.4) 20.8 (15.9)



29

Table D.4 Experiment 2: Performance Comparison.

(1)

Root Mean Squared Error

Information type (Base is Baseline conditions)

Public info complex conditions 5.96∗ (2.43)

Private info complex conditions -4.64∗ (2.35)

Question type (Base is DF conditions)

PIA conditions -12.49∗∗∗ (2.42)

Interaction effects (Base is Baseline × PIA condition)

Public info complex × PIA -7.42∗ (3.52)

Private info complex × PIA 10.77∗∗ (3.48)

Constant 35.25∗∗∗ (1.66)

N 252

R2 0.27

Note. Columns (1) is a linear regression model with RMSE as the dependent variable. + p < 0.1,
* p < 0.05, ** p < 0.01, *** p < 0.001.

Table D.5 Experiment 3: Performance comparison.

(1)

Root Mean Squared Error

Answer type (Base is Numeric conditions)

Multiple choice conditions -0.82 (1.97)

Question type (Base is DF conditions)

PIA conditions -5.01∗ (2.15)

Interaction effects (Base is Numeric × PIA condition)

Multiple choice× PIA -3.61 (2.90)

Constant 28.37∗∗∗ (1.38)

N 170

R2 0.15

Note. Columns (1) is a linear regression model with RMSE as the dependent variable. + p < 0.1,
* p < 0.05, ** p < 0.01, *** p < 0.001.
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