
When Should Doctors and Patients Use Shared
Decision-Making Under Bounded Rationality?

Recently, clinicians and governments have increased their advocacy for shared-decision making (SDM), a

process in which doctors and patients jointly decide amongst appropriate treatment options. Even though

both benefits and limitations of SDM have been documented, it is often positioned as a universal recommen-

dation. In contrast, in this paper, we use a stylized analytical model to derive clear guidelines on when and

how to employ SDM. Relative to an evidence-based medicine (EBM) approach that decides based on pop-

ulation averages, we first establish that doctors should always engage in SDM if both doctors and patients

are perfectly rational. However, we show that EBM can outperform SDM once we account for patients’ and

doctors’ bounded rationality (i.e., random errors). We find that when doctors and patients are boundedly

rational, administrators should allow doctors to decide whether or not to engage in SDM (versus EBM) on a

Case-by-Case (CbC) basis as long as doctors are sophisticated enough to make appropriate adjustments to

account for such bounded rationality. If doctors are too overconfident (insufficiently accounting for random

errors), it can be best to enforce EBM. If doctors are too underconfident (excessively accounting for random

errors), it can be best to enforce SDM. More generally, we provide a set of results that map how patient pop-

ulation and doctor characteristics affect the relative performances of SDM, EBM, or CbC decision-making

processes.

1. Introduction

Healthcare systems are trending towards patient-centered care (Breen et al. 2010). A cornerstone of

patient-centered care is shared decision-making (SDM), “a process in which clinicians and patients

work together to select tests, treatments, management or support packages, based on clinical evidence

and the patient’s informed preferences” (Coulter and Collins 2011). SDM promises to improve patient

utility, in part, through personalized care. Doctors inform patients about their personalized prognosis

regarding risk and outcome predictions, and patients can incorporate their personalized lifestyle and

risk preferences. Thus, this “co-production” process promises to capitalize on the heterogeneous needs

and preferences of each patient (Daack-Hirsch and Campbell 2014, Bagshaw et al. 2021).

In contrast to SDM, evidence-based medicine (EBM) “focuses on using randomized clinical trials

(RCTs) to establish the best treatment for the average patient” (de Leon 2012, p. 153). Thus, EBM

develops protocols and guidelines based on population averages, rather than focusing on the individual

patient (Romana 2006). Advocates for SDM criticize EBM’s neglect of the individual patient, calling

EBM a “doctor-centered” approach (Sweeney et al. 1998) that overemphasizes the disease and neglects

the subjective needs and desires of the patient (Haines et al. 2019, Spatz et al. 2017, JM 2018). These

types of criticisms have led to actions such as the United Kingdom’s National Health Service (NHS)’s

1



: Shared Medical Decision-Making Under Bounded Rationality
2 00(0), pp. 000–000, © 0000 INFORMS

stating that SDM is “appropriate in almost every situation in community, primary and secondary

care where a care decision has to be made and that decision is said to be preference-sensitive” (NHS

England and NHS Improvement 2019), and marketing the motto “no decision about me without

me” (Coulter and Collins 2011). The United States’ Patient Protection and Affordable Care Act

makes similar recommendations (ACA 2010). And, in 2011, 58 experts from 18 countries published

the Salzburg Statement on Shared Decision Making, calling for clinicians and patients to use SDM

(Salzburg Global Seminar 2011).

Despite many experts advocating for SDM in general, doctors cite several implementation challenges

and are often reluctant or slow to implement it in practice. Patients’ lack of information literacy is

one such challenge. For example, one medical oncology doctor reports “sometimes I feel like if we lay

all the options out there sometimes it confuses them and they are not really making a good decision in

the end” (Zeuner et al. 2015). Another says, “the main thing that stands in my way (of using SDM) is

the patient’s inability to understand risk.” (Schoenfeld et al. 2019). Furthermore, doctors often report

confusion or uncertainty about when or if they should apply SDM (Baghus et al. 2022, van der Horst

et al. 2022, Barker et al. 2019). The frequency with which SDM is used also varies considerably among

doctors. Within the same hospital network, one doctor may say, “This is my routine—no decision is

made without the involvement of the patient. Clinical practice is about patient education and shared

decision making,” while another says, “I base my decisions on evidence. I have a manual that I rely

on” (Alameddine et al. 2020). Moreover, doctor-specific factors such as experience, confidence, and

awareness of one’s own limitations often correlate with SDM implementation rates (Simmons et al.

2016, Schoenfeld et al. 2018, 2019, Waddell et al. 2021).

In this paper, we develop clear guidelines for how doctors should approach using SDM by means

of a modelling framework that explicitly incorporates both the potential benefits of SDM claimed by

its advocates and the real-world implementation challenges that make doctors reluctant to employ

it in practice. That is, we provide answers to the questions: When should healthcare policymakers

and administrators mandate that doctors follow SDM or EBM? When should they give doctors the

autonomy to decide to use SDM on a Case-by-Case (CbC) basis? How do doctor and patient cognitive

limitations and behavioral tendencies impact such guidelines?

Doctor-Patient Decision Process Description

Evidence Based Medicine (EBM)
Doctor chooses treatment based on population mean prognoses
and preferences

Shared Decision Making (SDM)
Doctor communicates patient-specific prognoses and patient
chooses treatment incorporating their personal preferences

Case-by-Case (CbC)
Doctor observes patient-specific prognoses and decides whether
or not to employ EBM or SDM

Table 1 Comparison of Doctor-Patient Decision Processes
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To gain insight into these questions, we formulate a doctor-patient healthcare decision process with

two possible treatments. We develop a stylized model in which patients are heterogeneous in both their

medical prognoses under each treatment and their preferences for these medical prognoses. Doctors

have private information about patients’ medical prognoses under each treatment, and patients have

private information about their preferences about medical prognoses. We use our model to compare

the performances of the three types of decision-making processes described in Table 1: Evidence Based

Medicine (EBM), Shared Decision Making (SDM), and Case-by-Case (CbC).

As shown in Figure 1, we compare those three types of processes under different rationality

paradigms which progressively capture more behavioral realism. Under perfect rationality, doctors

make perfect prognoses and patients make perfect decisions. Under bounded rationality, doctors have

noisy signals of patient prognoses, and patients sometimes make treatment decision errors when they

try to apply their preferences to the prognoses that they are given. When doctors are sophisticated,

they have the metacognitive ability to properly hedge against such random errors (by making appro-

priate Bayesian adjustments to their own noisy prognoses signals and properly anticipating patient

decision errors). When doctors are miscalibrated, they either insufficiently account for random errors

(a form of overconfidence) or excessively account for random errors (a form of underconfidence).

We now outline the structure of the paper and preview our main results. After reviewing the related

literature in §2 and introducing the model in §3, we present the following results.

First, in §4, we compare the three types of decision-making processes under a perfectly-rational

paradigm. We find that SDM is always the right strategy under perfect rationality. Moreover, doctors

under CbC always correctly choose whether to employ SDM, making SDM and CbC equivalent.

Second, in §5, we introduce boundedly rational doctors and patients under the assumption that

doctors are sophisticated enough to optimally account for such bounded rationality. Under these

assumptions, we show that SDM no longer dominates EBM. In fact, it is always optimal to let doctors

employ CbC. In other words, bounded rationality can make EBM superior to SDM, and we should let

Figure 1 Rationality paradigms and section organization preview
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doctors decide when to employ SDM as long as they are sophisticated enough to accurately account

for such random errors.

Third, in §6, we consider boundedly rational doctors and patients, but relax the assumption of

doctor sophistication. Instead, we allow doctors to be miscalibrated by either under- or over-accounting

for random errors. Under such conditions, we show that there is no single dominating decision process

type. If doctors are overconfident, then it could be beneficial to enforce EBM (CbC dominates SDM).

If doctors are underconfident, then it could be beneficial to enforce SDM (CbC dominates EBM).

Finally, in §7, we conduct sensitivity analyses to map how doctor and patient characteristics affect

the relative performances of SDM, EBM, and CbC. Table 2 in §7 highlights our main findings. Gen-

erally speaking, our analyses suggest that policymakers should:

• Recommend CbC when (i) doctors are accurate and sophisticated, and (ii) patients make large

random errors and are medically heterogeneous but have homogeneous preferences.

• Recommend EBM when (i) doctors are inaccurate and overconfident, and (ii) patients make mod-

erate random errors and are medically homogeneous but have heterogeneous preferences.

• Recommend SDM when (i) doctors are inaccurate and underconfident; and (ii) patients make

moderate random errors and are medically homogeneous but have heterogeneous preferences.

We conclude, in §8, with a discussion of managerial insights, limitations, and potential future research

directions.

2. Related Literature

Shared Decision-Making in the Medical Literature : In general, the medical literature supports

the use of SDM in preference-sensitive conditions because it allows for the provision of personal-

ized medicine and the incorporation of patient values into care decisions (Braddock III et al. 1999,

Oshima Lee and Emanuel 2013, Veroff et al. 2013, Daack-Hirsch and Campbell 2014, Shay and Lafata

2015). However, some cite patients’ lack of health literacy as a major barrier to SDM and caution

doctors against engaging patients with low health literacy in decision making (McCaffery et al. 2010,

Shippee et al. 2015, Palumbo and Manna 2018). Unfortunately, there are no clear guidelines on when

to use SDM (van Veenendaal et al. 2018, Barker et al. 2019, Baghus et al. 2022, van der Horst et al.

2022), leaving such decisions highly dependent on clinician judgment. We contribute to this stream

of literature by providing guidelines on when and how to use SDM, taking into account not only the

bounded rationality of patients, but also the bounded rationality of doctors.

Shared Decision-Making in the Healthcare Operations Management Literature : The

incorporation of patient preferences and patient participation in care decisions has been modeled in

the healthcare operations management literature. For example, Ahn and Hornberger (1996) consider

incorporating patient preferences for health states in the allocation process for cadaveric kidney trans-

plants, and Batun et al. (2018) consider incorporating patient preferences for risk in liver acceptance
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decisions for patients with end-stage liver disease. Ayvaci et al. (2018) develop a modeling framework

that incorporates patient risk preferences in diagnostic decisions following mammography screening.

In optimizing decisions about whether and when to perform biopsies for patients on active surveil-

lance for prostate cancer, Li et al. (2023) allow the weights attributed to the reward criteria to vary

according to patient preferences. All of these papers assume that the decision-makers are perfectly

rational, whereas we allow for the doctors and patients to be boundedly rational.

Co-production in the Service Operations Management Literature : Co-production in service

systems refers to customers playing an active role in the creation of the final output. Co-production has

attracted considerable attention in the service operations management literature (Fuchs et al. 1968,

Sampson and Froehle 2006), where many papers have analyzed its implications using analytical mod-

els. For example, Xue and Field (2008) consider a co-production process with information stickiness

in a consulting service and study the work allocation between the consultant and the client as well as

the pricing decisions. Roels (2014) identifies the optimal design of a co-production process between a

customer and a service provider by investigating how much interaction is needed. The paper finds that

as a task becomes less standardized, it is optimal to increase the interaction between the customer

and the service provider. Daw et al. (2020) develop new stochastic models for service co-production

in contact centers by incorporating dynamic factors that depend on the mechanics of the interaction,

such as the number of words written by each party. Some papers have examined the optimal contract

design for service co-production. For example, Rahmani et al. (2017) consider a knowledge-intensive

project that requires the involvement of both the client and the vendor. They provide several insights

into the optimal contract design when the client cannot monitor and verify the vendor’s efforts.

Bounded Rationality in Behavioral Operations Management and Judgment and Deci-

sion Making : Several papers in behavioral operations management consider the role of bounded

rationality (Simon 1957), and noisy decision-making in particular, in designing operational systems.

For example, researchers have examined how bounded rationality impacts the optimal design of supply

chain contracts (Ho and Zhang 2008, Kalkanci et al. 2011, Su 2008), queues (Huang et al. 2013, Tong

and Feiler 2017), auctions (Davis et al. 2014) and forecasting processes (Kremer et al. 2016, Ibrahim

et al. 2021) in the presence of human random error. Similarly, this paper examines the role of random

errors of doctors and patients on the design of shared decision making.

A key performance issue when individuals make random errors is whether they have the metacogni-

tion to make adjustments to account for these errors (e.g., by making a Bayesian correction). Failure to

do so leads to overprecision (Soll 1996, Juslin et al. 2007), a form of overconfidence (Moore and Healy

2008). Ren and Croson (2013) show that overprecision is a driver of the well-studied “pull-to-center”

behavior in newsvendor decision-making. Feiler and Tong (2022) find that overprecision can interact

with system dynamics to result in overoptimism in forecasting new products. Our paper contributes

to this literature by examining the role of overprecision (via failure to account for random errors) on

the performance and design of medical shared decision making.
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3. Model Setting

A doctor and patient need to decide between two treatments: A and B. The utility of treatment t for

patient k is equal to

Ukt = VkXkt. (1)

Here, Xkt captures how each patient may medically respond to treatments differently. In other words,

Xkt denotes the true medical prognosis under a given treatment t along a key dimension. We can think

of it as the key differentiating feature of a treatment. For example, it could measure the aggressiveness

of a treatment (e.g., forecasted variability in quality-of-life outcome), or a key side effect of a treatment

(e.g., forecasted weight change). Vk captures how two patients may not like the same medical prognoses

equally. That is, Vk denotes patient k’s value for the attribute of interest, which can be negative.

We also make the following distributional assumptions, primarily to facilitate analysis. We assume

that Xkt follows a normal distribution with mean µt and variance σ2
Xt (we drop the index k because it

does not affect the distribution). For algebraic convenience, we assume that σ2
XA = σ2

XB = σ2
X/2, but

our results hold even if these variances are not equal. We assume that Vk has a uniform distribution

within the domain [v, v̄] with mean µV = E[Vk] and variance σ2
V = V ar[Vk], and v < 0< v̄. Without

loss of generality, we assume that treatment B is “better” in the following average sense: (a) µB >µA,

and (b) µV > 0. In other words, treatment B produces a higher Xkt for the average patient, and

the average patient prefers positive Xkt’s. We assume that Vk’s and Xkt’s are independent random

variables.

In general, doctors are the relative experts in making the medical prognoses for a given patient,

while the patient is the relative expert about their own preferences (Ng and Lee 2021, p.4). Therefore,

we assume that the patient knows the realization of Vk, but the doctor does not. Similarly, we assume

that the doctor observes the realizations of Xkt values for a given patient k, but the patient does not.

The following two examples may help conceptualize this utility model:

Example 1 Consider two treatment options for lung cancer: radiation (Treatment A) or surgical

extirpation (Treatment B). The latter tends to offer a higher probability of 5-year survival but carries

a higher risk of immediate death. Then, we can interpret XkA as the level of aggressiveness under

treatment A and XkB under treatment B, with µA − µB < 0 because, for most patients, treatment B

is more aggressive on average. We can interpret Vk as patient k’s preference for aggressiveness, with

µv > 0 interpreted as the population of patients generally preferring a more aggressive approach (with

higher probability of 5-year survival).

Example 2 Consider two treatment options for type-2 diabetes: insulin therapy (Treatment A) and

liraglutide therapy (Treatment B). Assume that the focal attribute is the weight loss side effect. Treat-

ment A generally leads to weight gain, while treatment B leads to weight loss (Purnell et al. 2014).
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Then, we can interpret XkA as the weight loss under treatment A and XkB under treatment B, with

µA−µB < 0 because treatment B leads to greater weight loss on average. We can interpret Vk as patient

k’s preference to lose weight, with µV > 0 interpreted as the average patient preferring to lose weight.

We consider the following three decision-making policies in this paper:

• Evidence-Based Medicine (EBM): The doctor selects a treatment based on average patient

prognoses and average patient preferences. That is, they solve:

EBM : max
t∈{A,B}

E[Vk]E[Xkt]. (2)

Given that we have E[UkA] − E[UkB] = µV (µA − µB) < 0, following EBM in our model set-up is

equivalent to always choosing treatment B.

• Shared-Decision Making (SDM): For every patient k, the doctor and patient participate in a

joint decision-making process: (i) the doctor makes a prediction about the prognosis under each

treatment X̂kt = x̂kt, and they share these x̂kt values with the patient; (ii) the patient merges x̂kt’s

provided by the doctor with their preferences captured by Vk = vk to compare the utilities under

each treatment and chooses by solving the problem

SDM : max
t∈{A,B}

Ûkt(vk, x̂kt), (3)

where Ûkt(vk, x̂kt) denotes the patient’s perceived utility for treatment t.

• Case-by-Case (CbC): The doctor decides whether to implement EBM or SDM on a patient-

by-patient basis: (i) The doctor develops a prediction about the prognosis under each treatment,

X̂kt = x̂kt; (ii) the doctor decides whether to implement EBM or SDM based on their perceived

expected utilities under each process, USDM(x̂kt) and UEBM(x̂kt), respectively.1 Thus, they solve

the following problem:

CbC: max
{
USDM(x̂kt),U

EBM(x̂kt)
}
. (4)

Under CbC, the probability the doctor implements SDM for patient k is:

PSDM = PX̂kt
(
USDM(X̂kt)−UEBM(X̂kt)≥ 0

)
, (5)

where PX̂t denotes the total probability law taken with respect to X̂t.

1USDM (x̂kt) and UEBM (x̂kt) will be introduced precisely in Sections 4, 5 and 6.
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4. Perfect Rationality Benchmark

This section assumes perfectly rational doctors and patients, i.e., doctors make perfectly accurate

diagnoses and patients make no errors in combining those diagnoses with their own preferences to

make a treatment decision. Thus, for a given patient k, the doctor observes the realization of Xkt’s

without any error (X̂kt = Xkt). Then, given Xkt = xkt and the patient’s realized value Vk = vk, the

patient’s perceived utility for treatment t, Û(vk, xkt), is calculated as Ûkt(vk, xkt) = vkxkt. In this case,

the perceived utility is the actual utility for the treatment.

From the doctor’s point of view, under SDM, the patient selects treatment A with the following

probability:

P (Vk, xkt) =

{
1, if ÛkA(Vk, xkA)≥ ÛkB(Vk, xkB),

0, otherwise.
(6)

Note in (6) that Xkt is not random since the doctor observes its realization during the examination,

while Vk is a random variable since the doctor does not know its value. Thus, P (Vk, xkt) is itself a

random variable which is a function of Vk. Furthermore, given Xkt = xkt, the expected SDM and EBM

utilities perceived by a perfectly rational doctor are equal to:

USDM(xkt) =E [VkXkAP (Vk,Xkt) +VkXkB(1−P (Vk,Xkt)) |Xkt = xkt]

=EVk [VkxkAP (Vk, xkt) +VkxkB(1−P (Vk, xkt))] , (7)

UEBM(xkt) =EVk [VkXkB |Xkt = xkt] = µV xkB, (8)

where EVk [·] denotes the expectation taken with respect to the probability distribution of Vk. The

following proposition compares the performances of CbC, SDM, and EBM.

Proposition 1 Let doctors and patients be perfectly rational. Then,

(a) Under CbC, the doctor selects SDM with probability 1.

(b) SDM (or, equivalently, CbC) provides a higher expected utility than EBM.

Proposition 1 establishes that SDM outperforms EBM if doctors and patients are perfectly rational.

Moreover, CbC is equivalent to SDM because under CbC the doctor will always choose to implement

SDM. The intuition is that SDM optimally uses a personalized medical diagnosis,Xkt, and the personal

preferences of the patient, Vk, to make a treatment decision. In contrast, EBM is based only on

population averages. CbC always chooses SDM because the doctor recognizes that such personalization

achieved by SDM outperforms EBM in expectation.
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5. Bounded Rationality with Sophisticated Doctors

In Section 4, we considered perfectly rational doctors and patients. In reality, doctors are humans

whose judgments about a patient’s medical prognosis may suffer from random error (Gigerenzer and

Muir Gray 2011, Kahneman et al. 2016). Furthermore, patients may make errors in their attempts to

interpret the information provided by the doctor and to combine it with their personal preferences

to make a decision, for example, due to patient illiteracy and innumeracy (Williams et al. 2002).

Therefore, in this section, we relax the assumption of perfect rationality for doctors and patients

by incorporating random error. We introduce two new parameters σd ≥ 0, σp ≥ 0 which capture the

variance of doctors’ and patients’ random errors, respectively. When σd = σp = 0, the model reduces

to the perfectly rational model in Section 4.

Though doctors and patients are boundedly rational in the sense that they suffer from random error,

we first assume that doctors are sophisticated in that they recognize and account for such random

errors intelligently. Specifically, we assume they make Bayesian corrections to account for the noise

in their medical diagnoses. And, they take expectation over the random error of their patients when

deciding whether or not to engage in SDM. In Section 6, we relax this sophistication assumption.

We begin by describing our model for the doctor. We assume that the doctor does not know the

actual realizations of the prognoses under treatments A and B, i.e., XkA and XkB. Rather, through

their examination of a given patient k, they can only observe a noisy signal of the prognosis, Skt:

Skt :=Xkt + Ekt, (9)

where Ekt’s are identically normally distributed random variables with mean zero and variance σ2
d/2.

Here, σd captures the doctor’s inconsistencies or random errors in evaluating the patient’s condition

through the examination. We assume that Ekt’s are independent across the treatments and across

patients, and are also independent of Vk’s and Xkt’s. Given the noisy signal, Skt, the doctor’s prediction

for each treatment’s prognosis, X̂kt, is equal to the Bayesian-adjusted forecast:

X̂kt =E[Xkt | Skt] =
σ2
X

σ2
X +σ2

d

Skt +
σ2
d

σ2
X +σ2

d

E[Xkt]. (10)

Thus, the doctor’s forecast for the difference between the two treatments’ prognoses is:

X̂kA− X̂kB =
σ2
X

σ2
X +σ2

d

(SkA−SkB) +
σ2
d

σ2
X +σ2

d

(µA−µB). (11)

We now turn to describing our model for the patient. Given the doctor’s noisy prognosis X̂kt = x̂kt

and the patient’s individual value Vk = vk, the patient predicts the utility of treatment t to be:

Ûkt(vk, x̂kt) = vkx̂kt + γkt, (12)

where γkt represents the random error added by the patient. We assume that γkt’s are identically

distributed random variables which are independent across the treatments, across patients, and from
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Vk’s,Xkt’s, and Ekt’s. We assume that γkt follows an extreme value distribution with standard deviation

π√
6
σp. Here, σp captures the patient’s irrationality level. The extreme value distribution assumption

for the error terms is common in the bounded rationality literature (Anderson et al. 1992). To that

end, from the doctor’s point of view, under SDM, the patient selects treatment A with the following

probability, given X̂kt = x̂kt, where Pγ denotes the total probability law taken with respect to γ:

P (Vk, x̂kt) = Pγ
(
ÛkA(Vk, x̂kA)≥ ÛkB(Vk, x̂kB)

)
=

1

1 + eVk(x̂kB−x̂kA)/σp
. (13)

As in Section 4, the selection probability of treatment A, P (Vk, x̂kt), is a random variable from the

doctor’s perspective, as it is a function of Vk which is not observed by the doctor. Furthermore, given

X̂kt = x̂kt, the expected SDM and EBM utilities perceived by the doctor are:

USDM(x̂kt) =E
[
VkX̂kAP (Vk, X̂kt) +VkX̂kB(1−P (Vk, X̂kt)) | X̂kt = x̂kt

]
=EVk [Vkx̂kAP (Vk, x̂kt) +Vkx̂kB(1−P (Vk, x̂kt))] , (14)

UEBM(x̂kt) =EVk
[
VkX̂kB | X̂kt = x̂kt

]
= µV x̂kB. (15)

However, since doctors have noisy signals of patients’ prognoses, the actual expected SDM and EBM

utilities given the noisy signal Skt = skt may differ from the doctor’s perceived expected utilities

introduced in (14) and (15). Specifically, given that the doctor, after observing the signal Skt = skt,

communicates to the patient the forecast x̂kt = E[Xkt|Skt = skt] (recall (10) and note that x̂kt is a

function of skt), the actual expected SDM and EBM utilities, denoted by USDM
a (skt) and UEBM

a (skt),

respectively, are:

USDM
a (skt) =EXkt,Vk

[
VkXkAP (Vk, x̂kt) +VkXkB(1−P (Vk, x̂kt) | Skt = skt

]
=EVk

[
VkE[XkA | SkA = skA]P (Vk, x̂kt) +VkE[XkB | SkB = skB](1−P (Vk, x̂kt))

]
, (16)

UEBM
a (skt) =EXkt,Vk [VkXkB | SkB = skB] = µV E[XkB | SkB = skB]. (17)

Since the actual expected SDM and EBM utilities may be different from those perceived by the doctor,

it is possible that under CbC, the doctor may choose the “wrong” strategy, i.e., they may engage in

SDM when they should not have (in an average sense), which we refer to as wrong SDM, or they

may not engage in SDM when they should have (in an average sense), which we refer to as wrong

EBM. To this end, under CbC, we define P SDM
W , PEBM

W , and PW as the probability of wrong SDM,

the probability of wrong EBM, and the total probability of following the wrong strategy, respectively.

Using (14)-(17):

P SDM
W = PSkt

(
USDM(X̂kt)−UEBM(X̂kt)≥ 0, USDM

a (Skt)−UEBM
a (Skt)< 0

)
, (18)

PEBM
W = PSkt

(
USDM(X̂kt)−UEBM(X̂kt)< 0, USDM

a (Skt)−UEBM
a (Skt)≥ 0

)
, (19)
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PW = P SDM
W +PEBM

W . (20)

We emphasize that “right” and “wrong” strategies are to be understood in an ex-ante average sense,

e.g., when a doctor selects a wrong strategy (based on comparing the ex-ante expectations), they

may actually still select the right treatment ex-post (based on the specific realizations of the random

variables for the patient).

5.1. Performance Comparisons

We now compare the performances of CbC, SDM, EBM. To do so, it is helpful to first characterize

the doctor’s SDM engagement probability and wrong SDM and EBM probabilities under CbC.

Proposition 2 Let doctors and patients be boundedly rational and doctors sophisticated. Then, under

CbC:

(a) The doctor does not always select SDM, i.e., PSDM < 1.

(b) The doctor selects the right strategy for all patients, i.e. P SDM
W = PEBM

W = PW = 0.

Recall from Proposition 1(a) in Section 4 that under perfect rationality, a doctor under CbC always

chooses to employ SDM. In contrast, Proposition 2(a) shows that with bounded rationality, a doctor

under CbC selects EBM instead of SDM for some patients. Proposition 2(b) states that doctors under

CbC optimally choose between SDM and EBM for all patients. In other words, sophisticated doctors

do the best they can given the information they have. Of course, because their prognoses are not

perfect and patient behavior is noisy, these choices may not be optimal ex post.

Proposition 2 guarantees that under CbC, the doctor always chooses the strategy that provides a

higher actual conditional expected utility given the signal. To compare the performances of CbC, SDM,

and EBM, on the other hand, we define the expected utilities of these three policies with unconditional

expectations calculated by averaging the actual conditional expected utilities over erroneous signals,

thereby accounting for the errors in the signals themselves. Recall from Proposition 1 in Section 4 that

SDM provides the same utility as CbC, and both SDM and CbC provide a higher utility than EBM

if patients and doctors are perfectly rational. However, in this section, doctor and patient errors pose

a disadvantage for both SDM and CbC, and deteriorate their performances. Hence, it is not obvious

whether SDM and CbC still dominate EBM. Furthermore, given that human random error breaks the

equivalence between CbC and SDM, as per Proposition 2(a), it is unclear, a priori, whether CbC will

perform better than SDM. Nevertheless, the following proposition establishes that with sophisticated

doctors, CbC does in fact always generate a higher expected utility than SDM.

Proposition 3 Let doctors and patients be boundedly rational and doctors sophisticated. Then:

(a) SDM provides a lower expected utility than EBM under certain conditions, e.g., when σp is suffi-

ciently high.

(b) CbC provides a higher expected utility than both EBM and SDM.
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Proposition 3(a) shows that with human random error, it is not possible to ensure the superiority of

SDM over EBM for all conditions. Indeed, it can be shown that when both doctors and patients are

erroneous, using SDM rather than EBM results in a utility loss for sufficiently low patient rationality

(high σp), underscoring the importance for policymakers to recognize patient and doctor errors when

adopting appropriate policies. This result contrasts with the conventional wisdom of always using SDM

(Couët et al. 2015, Stiggelbout et al. 2015, Merchant et al. 2018, NHS England and NHS Improvement

2019).

Furthermore, Proposition 3(b) demonstrates that if doctors are sophisticated, then the expected

utility generated by CbC is higher than the ones generated by pure EBM or pure SDM. The rationale

is as follows. On the one hand, unlike EBM, the doctor under CbC can involve a patient in the

decision-making process if they predict that the patient will probably select the “correct” treatment,

matching the patient’s values. For such patients, CbC enables benefiting from SDM’s patient-value

incorporation and personalized medicine. On the other hand, once the doctor chooses to engage in

SDM, they subject themselves to both their own forecasting errors and patient errors. As such, to

ensure that CbC outperforms both SDM and EBM, it becomes crucial for doctors in CbC to be able

to switch between EBM and SDM correctly. Sophisticated doctors are able to do so under CbC, as

per Proposition 2(b). Hence, CbC incorporates a patient into SDM only if that patient is likely to

select the treatment that reflects their individual preferences.

6. Bounded Rationality with Miscalibrated Doctors

Doctors may not be sophisticated enough to optimally account for random errors, as we assumed in

§5. In particular, in this section we consider doctors who may be miscalibrated in their attempt to

account for random errors, either by insufficiently or excessively accounting for them. We introduce

two new behavioral parameters αd ≥ 0 and αp ≥ 0 that can capture doctors who are miscalibrated

with respect to their own prognosis’ random error and patient random errors, respectively. When

αd = αp = 1, the doctor is sophisticated and the model reduces to that in §5.

When αd = 1, the doctor is Bayesian. When αd < 1, the doctor insufficiently accounts for their

prognosis random error. The doctor over-relies on the signal and insufficiently accounts for prior,

consistent with base-rate neglect (Kahneman and Tversky 1973, Bar-Hillel 1980). When αd > 1, the

doctor excessively accounts for their prognosis random error. The doctor does not respond to the signal

sufficiently and over-relies on the prior, consistent with conservatism (Edwards 1968). In general, we

refer to insufficiently accounting for random error as a form of overconfidence, and excessive accounting

for random error as underconfidence.

The doctor’s prognosis for patient k under treatment t is:

X̂m
kt =

σ2
X

σ2
X +αdσ2

d

Skt +
αdσ

2
d

σ2
X +αdσ2

d

E[Xkt], (21)
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The doctor’s belief about the difference between prognoses under the two treatments is:

X̂m
kA− X̂m

kB =
σ2
X

σ2
X +αdσ2

d

(SkA−SkB) +
αdσ

2
d

σ2
X +αdσ2

d

(µA−µB). (22)

Next, for patient k, the miscalibrated doctor’s perceived selection probability for treatment A, under

SDM, is equal to:

Pm(Vk, x̂
m
kt) =

1

1 + eVk(x̂m
kB
−x̂m

kA
)/(αpσp)

. (23)

We note that we write (23) by replacing σp in (13) with αpσp, and αp reflects the degree to which

the miscalibrated doctor accounts for patient errors. When αp = 1, the doctor is sophisticated and

accurately accounts for patient random errors. When αp < 1, the doctor insufficiently accounts for

patient decision random error, and when αp > 1 the doctor excessively accounts for it.

For miscalibrated doctors, the doctor’s perceived expected utilities from implementing SDM or

EBM may differ from the true expected utilities. We define the doctor’s belief about the expected

SDM and EBM utilities, USDM(x̂mkt) and UEBM(x̂mkt), as follows:

USDM(x̂mkt) =E
[
VkX̂

m
kAP

m(Vk, X̂
m
kt) +VkX̂

m
kB(1−Pm(Vk, X̂

m
kt)) | X̂m

kt = x̂mkt

]
=EVk [Vkx̂

m
kAP

m(Vk, x̂
m
kt) +Vkx̂

m
kB(1−Pm(Vk, x̂

m
kt))] , (24)

UEBM(x̂kt) =EVk
[
VkX̂

m
kB | X̂m

kt = x̂mkt

]
= µV x̂

m
kB. (25)

On the other hand, the actual expected utilities of SDM and EBM for a doctor who shares the forecast

X̂m
kt = x̂mkt are:

USDM
a (skt) =EXkt,Vk

[
VkXkAP (Vk, x̂

m
kt) +VkXkB(1−P (Vk, x̂

m
kt) | Skt = skt

]
=EVk

[
VkE[XkA | SkA = skA]P (Vk, x̂

m
kt) +VkE[XkB | SkB = skB](1−P (Vk, x̂

m
kt))
]
, (26)

UEBM
a (skt) =EXkt,Vk [VkXkB | SkB = skB] = µV E[XkB | SkB = skB]. (27)

Note that in (24)-(27), we use the independence of Skt and Vk to arrange the expressions for the

expectations.

6.1. Performance Comparisons

To compare the performances of SDM, EBM, and CbC, it is again helpful to first characterize the

doctor’s wrong SDM and EBM probabilities under CbC.

Proposition 4 Let doctors and patients be boundedly rational and doctors be miscalibrated. Then,

under CbC, the following statements hold:

(a) If the doctor is overconfident (αd < 1, αp < 1), then P SDM
W > 0 and PEBM

W = 0.

(b) If the doctor be underconfident (αd > 1, αp > 1), then there exists a constant Φ such that:
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(i) If αpσp ≥Φ, then P SDM
W = 0 and PEBM

W > 0.

(ii) If αpσp <Φ, then P SDM
W > 0 and PEBM

W > 0. Furthermore, PSDM −P SDM
W >P SDM

W .

(see Appendix B for the exact expression of Φ).

Recall from Proposition 2(b) in Section 5 that sophisticated doctors make optimal SDM/EBM

decisions for all patients. In contrast, Proposition 4 shows that, with miscalibrated doctors, the doctor

engages in wrong SDM or wrong EBM for some patients. Specifically, Proposition 4(a) establishes that

overconfident doctors tend to overestimate the expected utility difference between SDM and EBM by

not sufficiently recognizing the prognosis random errors and patient random errors. This creates a

systematic bias in the doctor’s SDM engagement decisions, resulting in engaging in wrong SDM for

some patients, i.e., P SDM
W > 0. On the other hand, Proposition 4(b) demonstrates that underconfident

doctors tend to engage in wrong EBM. That is, they either never conduct wrong SDM and only

conduct wrong EBM for some patients (when the perceived patient noise αpσp is sufficiently high;

see part (i) of Proposition 4(b)), or they may conduct both wrong SDM for some patients and wrong

EBM for others, with a wrong SDM probability that is lower than the right SDM probability (when

αpσp is sufficiently low; see part (ii) of Proposition 4(b)).

We next compare the performances of CbC, SDM, and EBM. First, recall from Section 5 that

with bounded rationality and sophisticated doctors, SDM may sometimes provide a lower utility than

EBM. Similarly, here, with bounded rationality and miscalibrated doctors, it is still possible that

EBM outperforms SDM.

Second, Proposition 3(b) in Section 5 establishes that with sophisticated doctors, who optimally

decide between SDM and EBM, CbC generates a higher expected utility than both pure SDM and pure

EBM. In contrast, in this section, miscalibrated doctors fail to make optimal SDM/EBM decisions

under CbC as per Proposition 4, which deteriorates the performance of CbC. Hence, it is not apparent,

a priori, whether CbC will continue to perform better than both SDM and EBM. Nevertheless, the

following proposition demonstrates that with miscalibrated doctors, CbC, in fact, yields a higher

expected utility than SDM so long as the doctor is not underconfident, whereas it yields a higher

expected utility than EBM so long as the doctor is not overconfident.

Proposition 5 Let doctors and patients be boundedly rational and doctors miscalibrated. Then, the

following statements hold:

(a) If the doctor is not underconfident (αd ≤ 1, αp ≤ 1), then CbC provides a higher expected utility

than SDM.

(b) If the doctor is not overconfident (αd ≥ 1, αp ≥ 1), then CbC provides a higher expected utility than

EBM.
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Proposition 5(a) shows that, with overconfident doctors, CbC generates a larger expected utility than

pure SDM. The reason is as follows. Under SDM, doctors engage in SDM for all patients, whereas

under CbC they do not allow a patient to be involved in decisions if they predict that SDM will produce

a lower utility than EBM for that patient. This reduces the exposure to both the doctor’s and patients’

random errors, and improves the performance of CbC against SDM. If the doctor conducts wrong

EBM, then the performance of CbC deteriorates against SDM. However, Proposition 4(a) ensures

that overconfident doctors never conduct wrong EBM. Since under CbC, underconfident doctors tend

to engage in wrong EBM for some patients, as established by Proposition 4(b), it is possible that

SDM outperforms CbC with underconfident doctors, e.g., when doctors are sufficiently accurate.

Furthermore, Proposition 5(b) establishes that if doctors are underconfident, CbC generates a larger

expected utility than pure EBM. The rationale is as follows. Although CbC, unlike EBM, provides

flexibility by enabling doctors to switch to SDM and to benefit from personalized medicine and

preference incorporation for some patients, the performance of CbC deteriorates against EBM when

the doctor engages in wrong SDM. However, Proposition 4(b) ensures that underconfident doctors

are not very likely to conduct wrong SDM, i.e., they conduct right SDM more often than wrong

SDM. Since overconfident doctors under CbC, unlike underconfident doctors, suffer from wrong SDM,

which may be more frequent than right SDM, it is possible that EBM may outperform CbC with

overconfident doctors, e.g., when doctors and patients make large random errors.

The fact that EBM or SDM can sometimes outperform CbC with miscalibrated doctors sheds

light on the value of accounting for doctor limitations when developing guidelines for shared decision-

making. That is, if one were to account only for patient errors but not for doctors’ cognitive biases

(i.e., overconfidence and underconfidence), one would erroneously consider CbC to be superior to

EBM (see Proposition 3(b)). However, Proposition 5 shows that policymakers should be cautious in

recommending miscalibrated doctors employ CbC rather than EBM or SDM. This is an important

insight, especially since the medical literature often reports patients’ lack of health literacy as a major

barrier to SDM, but pays little attention to doctors’ limitations (McCaffery et al. 2010, Shippee et al.

2015, Palumbo and Manna 2018).

7. Sensitivity Analysis: When is CbC, SDM, or EBM the right process?

In Sections 4, 5, and 6, we analytically compared the performances of CbC, SDM, and EBM under

progressively more general behavioral assumptions. We found that while SDM is always the best

process when doctors and patients are perfectly rational, this is no longer the case once you allow for

random errors. With random errors, CbC is best if doctors are sophisticated, but SDM or EBM could

be best if doctors are miscalibrated. So, in general, there is no single dominating treatment process.

When should policymakers recommend CbC, SDM, or EBM? To answer this question, we conduct

sensitivity analysis to compare the expected utilities of CbC, SDM, or EBM, for different doctor
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and patient characteristics. We first establish some results analytically and then perform numerical

analyses. Finally, we provide insights into when CbC, SDM, or EBM are superior.

7.1. Analytical Results

We first characterize the monotonicity of the expected utility difference between SDM and EBM with

respect to various system parameters; see Appendix B for the precise formulation of the sufficient

conditions listed in Proposition 6.

Proposition 6 Let doctors and patients be boundedly rational and doctors be miscalibrated. Then,

the expected utility difference between SDM and EBM (a) increases in σV if σV is sufficiently large,

(b) increases in σX if σX is sufficiently large, (c) decreases in σp if σp is sufficiently large, and (d)

decreases in σd if σd is sufficiently low, αd ≥ 1/2, and σX ≥−(µA−µB)
√

2αd− 1.

SDM enables doctors to integrate patients’ preferences into treatment decisions and provide person-

alized information to the patients about the treatment prognoses. Despite such advantages, patients

may choose the wrong treatment, i.e., the treatment that does not maximize their utility, due to

their own errors and noisy forecasts communicated by the doctor. In contrast, since EBM always pre-

scribes the optimal treatment for the average patient, factors such as patient preference heterogeneity,

prognosis variability, patient and doctor errors, as well as doctors’ underconfidence or overconfidence

degree, do not impact its performance.

Proposition 6(a) and 6(b) establish that the benefit of SDM becomes larger relative to EBM when

patients are more heterogeneous in their preferences (high σV ), or treatment prognoses are more

variable across the patient population (high σX). Proposition 6(c) and 6(d) show that an increase in

the level of patient random errors, σp, and an increase in the level of doctor inaccuracy, σd (if doctors

are not too overconfident, i.e., αd is not too low, and prognosis variability, σX , is sufficiently high)

increase the risk of selecting the wrong treatment, thereby worsening the performance of SDM relative

to EBM.

Moreover, the key insights of Proposition 6 apply to the performance comparisons between CbC and

EBM on one hand, and between CbC and SDM on the other hand. Specifically, if patient value het-

erogeneity (σV ), treatment prognosis variability (σX), and doctor accuracy (σd) are low, and patients

make large errors (high σp), then we expect that (i) CbC would lead to a lower expected utility than

EBM, and (ii) SDM would lead to a lower expected utility than CbC. This is because CbC is more

error-sensitive than EBM, and SDM is more error-sensitive than CbC.

7.2. Numerical Study

In this subsection, we conduct a numerical study to identify the settings under which CbC, EBM, or

SDM perform the best by far. We first define some new parameters PE,d, PE,p, PX and PV , which can

be interpreted as normalizations of σp, σd, σX , and σV , respectively:

PE,d = PXkt,Ekt(XkA >XkB, SkA <SkB) +PXkt,Ekt(XkA <XkB, SkA >SkB),
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PE,p = PVk,Skt,γkt(VkX̂kA >VkX̂kB, VkX̂kA + γkA <VkX̂kB + γkB)

+PVk,Skt,γkt(VkX̂kA <VkX̂kB, VkX̂kA + γkA >VkX̂kB + γkB),

PX = PXkt(XkA >XkB), PV = PVk(Vk < 0).

We note that PE,d, PE,d, PX and PV increase in σd, σp, σX and σV , respectively, and they all lie within

the interval [0,0.5]. Indeed, PE,d and PE,p capture the level of doctor noise (σd) and patient error

(σp), respectively, whereas PX and PV help us to quantify the level of prognosis variability (σX) and

patient value heterogeneity (σV ), respectively. In our base case scenario, we set PE,d, PE,p, PX , PV ,

αd and αp to moderate values, which we believe is consistent with a realistic setting. In particular,

for the base case, we let PE,d = PE,p = 0.30, PX = PV = 0.25, αd = αp = 0.50 in the experiments with

overconfident doctors, and we let PE,d = PE,p = 0.30, PX = PV = 0.30, αd = αp = 2 in the experiments

with underconfident doctors. We vary two parameters at a time while keeping others constant.

Figures 2 and 3 illustrate when CbC, EBM, or SDM is the right policy for overconfident and

underconfident doctors, respectively, as a function of the pairs (PE,p, PE,d), (PV , PX), and (αp, αd).

The darker red in these figures indicates a higher percentage utility improvement through switching

to CbC from the second-best policy, the darker blue indicates a higher percentage utility improvement

through switching to EBM from the second-best policy, whereas the darker green indicates a higher

percentage utility improvement through switching to SDM from the second-best policy. We make

three observations.

First, the blue regions in Figure 2 indicate the settings for which EBM yields substantially higher

expected utility than CbC (the second-best policy) with an overconfident doctor (recall from Section

6 that SDM is always suboptimal for overconfident doctors). We observe that EBM performs better

than CbC (i) with highly inaccurate doctors and moderate patient errors (high σd and moderate σp;

see Figure 2(a)), (ii) with low prognosis heterogeneity and moderate patient value heterogeneity (low

σX and moderate σV ; see Figure 2(b)), and (iii) with highly overconfident doctors (low αd and αp;

see Figure 2(c)). In such settings, performing EBM instead of CbC can increase the expected utility

by up to 20%.

The significantly better performance of EBM over CbC in settings with low σX and high σd is

consistent with Proposition 6. Furthermore, for EBM to outperform CbC, it is expected that doctors

are not too sophisticated in accounting for random errors (αd and αp should be sufficiently below

1). This is because with sophisticated doctors, CbC is superior to EBM (recall Proposition 3(b)).

Moreover, although a sufficiently low level of patient-value heterogeneity (σV ) and a sufficiently high

level of patient errors (σp) are enough to ensure the superiority of EBM over CbC, moderate σp and

σV values are needed for EBM to yield significantly higher expected utility than CbC. With a not

too large value of prognosis variability (σX), the doctor under CbC chooses to conduct EBM most of
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(a) The effect of PE,p and PE,d (b) The effect of PV and PX (c) The effect of αp and αd
Figure 2 Overconfident doctors: The percentage improvement in the expected utilities provided by switching to CbC

(red) and EBM (blue) when µA = −1, µB = 1, µV = 1, PX = PV = 0.25, PE,p = PE,d = 0.30, αp = αd = 0.5.

Note: In the red regions, CbC is the best policy, whereas in the blue regions, EBM is the best policy. Given that EUCBC , EUEBM and EUSDM

denote the expected utility under CBC, EBM, and SDM, respectively, the darker red indicates a higher
EUCBC−max{EUEBM,EUSDM}

EUCBC ×100

value, whereas the darker blue indicates a higher
EUEBM−max{EUCBC,EUSDM}

EUEBM × 100 value.

(a) The effect of PE,p and PE,d (b) The effect of PV and PX (c) The effect of αp and αd
Figure 3 Underconfident doctors: The percentage improvement in the expected utilities provided by switching to

CbC (red) and SDM (green) when µA = −1, µB = 1, µV = 1, PX = PV = PE,p = PE,d = 0.30, αp = αd = 2.

Note: In the red regions, CbC is the best policy, whereas in the green regions, SDM is the best policy. Given that EUCBC , EUEBM and EUSDM

denote the expected utility under CBC, EBM, and SDM, respectively, the darker red indicates a higher
EUCBC−max{EUEBM,EUSDM}

EUCBC ×100

value, whereas the darker green indicates a higher
EUSDM−max{EUCBC,EUEBM}

EUSDM × 100 value.

the time, and thus EBM performs close to CbC if patient value heterogeneity (σV ) is very low or the

level of patient errors (σp) is very high.

Second, CbC is the best policy when (i) doctors are sufficiently accurate but patients make large

errors (low σd and high σp; see Figures 2(a) and 3(a)), (ii) the prognoses under the two treatments have

sufficiently large variability across patients, and patients are not too heterogeneous in their preferences

(high σX and low σV ; see Figures 2(b) and 3(b)), and (iii) doctors are sufficiently sophisticated (αp

and αd values close to 1; see Figures 2(c) and 3(c)). In such settings, switching from SDM or EBM to

CbC can increase the expected utility by up to 35%.

The substantial superiority of CbC over SDM and EBM with sophisticated doctors (αp and αd

values close to 1) is in line with our previous results in Proposition 3(b). Proposition 6 implies that an

increase in prognosis variability (σX) improves the performance of CbC over EBM, while reducing the
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expected utility gap between CbC and SDM. Despite these two effects of increasing σX , the need for

a sufficiently large σX for CbC to provide significantly greater utility than EBM and SDM is based on

the following intuition. When prognosis variability is very low, CbC reduces to either SDM or EBM,

which in turn results in CbC performing very closely to either EBM or SDM. Similarly, the doctor’s

inaccuracy level (σd) should not be too high for the expected utility of CbC to be much greater than

that of EBM or SDM, because too inaccurate doctors’ forecasts for the treatment prognoses become

very close to the mean prognosis values, E[Xkt]’s, (see (21)), in which case CbC reduces to either SDM

or EBM. Finally, although from Proposition 6 we expect CbC to perform significantly better than

EBM when σp is sufficiently low or σV is sufficiently high, sufficiently large patient random error (σp)

and sufficiently low patient value heterogeneity (σV ) are required for the utility gap to be high. This

is because CbC performs close to SDM for too low σV or too high σp, and a sufficiently high σp and

a sufficiently low σV are required to obtain a significant utility gap between CbC and SDM.

Third, the green regions in Figure 3 indicate the settings for which SDM yields substantially higher

expected utility than CbC (the second-best policy) with an underconfident doctor (recall from Section

6 that EMB is always suboptimal for underconfident doctors). We observe that policymakers should

recommend doctors to perform SDM when (i) doctors are too inaccurate and patients make moderate

random errors (high σd and moderate σp; see Figure 3(a)), (ii) the medical prognoses under the two

treatments are not too heterogeneous across the patient population, and patients are moderately

heterogeneous in their preferences (low σX and moderate σV ; see Figure 3(b)), and (iii) doctors are

too underconfident (high αp and αd; see Figure 3(c)). In such settings, switching to SDM can result

in a large increase in the expected utility, as much as 35%.

It is intuitive that doctors should not be too sophisticated in accounting for random errors (αd

and αp should be sufficiently above 1) for SDM to outperform CbC since with sophisticated doctors,

CbC is superior to SDM (recall Proposition 3(b)). On the other hand, although Proposition 6 implies

that sufficiently high patient value heterogeneity, σV , and a sufficiently low level of patient errors,

σp, are enough to ensure the superiority of SDM over CbC, we need to have moderate σp and σV

values to obtain a significant utility gap. This is because CbC becomes equivalent to SDM for very

high σV or very low σp. In addition to the need for moderate σp and σV values, prognosis variability

and doctor accuracy should not be too high (sufficiently low σX and high σd) for SDM to provide

significantly greater utility than CbC, contrary to expectations. The reason is as follows. With a very

low prognosis variability (σX) or a high doctor inaccuracy (σd), doctors’ prognosis forecasts become

condensed around the mean prognosis values, E[Xkt]’s, (see (21)) and the doctor under CbC either

selects SDM or selects EBM for most of the cases. In fact, if the doctor is underconfident, it is very

likely that the latter case will occur, i.e., CbC reduces to EBM. However, for settings with not very

low patient value heterogeneity σV or not too high patient irrationality σp (as in the base case setting

in our numerical study), where there is still a substantial need to incorporate patient preferences via
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Recommended
Decision Process

Doctor Characteristics Patient Characteristics

CbC
sophisticated accounting for doctor and patient random errors,
low doctor prognosis random error

high medical prognosis heterogeneity,
low preference heterogeneity,
large patient decision random error

EBM
insufficient accounting for doctor and patient random errors,
high doctor prognosis random error

low medical prognosis heterogeneity,
moderate preference heterogeneity,
moderate patient decision random error

SDM
excessive accounting for doctor and patient random errors,
high doctor prognosis random error

low medical prognosis heterogeneity,
moderate preference heterogeneity,
moderate patient decision random error

Table 2 Recommended decision process based on doctor and patient characteristics.

SDM, a high proportion of these selected EBM cases is indeed wrong, and this in turn worsens the

performance of CbC versus SDM.

7.3. When is CbC, SDM, or EBM the right process?

Table 2 summarizes the findings from our sensitivity analyses at a high level. Policymakers and admin-

istrators should use CbC as long as doctors are sufficiently sophisticated, i.e., not too overconfident or

underconfident (see Proposition 3). The advantage of CbC in such settings is greatest when patient

errors are high, doctors errors are low, medical prognoses are heterogeneous, and patient preferences

are homogeneous. On the other hand, when doctors are miscalibrated, policymakers and administra-

tors may be better off promoting SDM or EBM (see Proposition 5). When doctors are overconfident,

EBM is superior. When doctors are underconfident, SDM is superior. These pure policies are most

important to enforce when doctors are inaccurate, patients have moderate random error, and patients

are medically homogeneous but have heterogeneous preferences.

8. Conclusions
8.1. Managerial Implications

The existing medical literature has extensively explored the advantages and disadvantages of SDM,

but it has given limited attention to clear guidelines on when to employ SDM. This paper offers

valuable insights for policymakers, outlining when to promote SDM, discourage, or allow flexibility

in implementing SDM. We find that if the doctor and patients are perfectly rational, policymakers

should encourage doctors to always engage in SDM. However, we demonstrate that EBM or CbC can

outperform SDM in the presence of patient and doctor random errors as well as doctors’ miscalibra-

tion. This contradicts the common medical belief that SDM is always superior. We derive sufficient

conditions for SDM to be the optimal policy.

Nevertheless, SDM may be easier to implement than CbC. To enhance outcomes with SDM, reducing

random errors in patients and doctors is crucial. Policymakers could introduce training programs

to improve patients’ health literacy (Muscat et al. 2019). Alternatively, doctors could elicit patient

preferences and decide on treatment by combining these preferences with their forecasts, rather than
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presenting forecasts and letting patients decide. To mitigate the impact of doctors’ random errors,

pooling forecasts from multiple doctors could harness the “wisdom of the crowd” (Surowiecki 2005,

Sunstein 2006, Sjöberg 2009, Davis-Stober et al. 2014). For instance, Kattan et al. (2016) report that

even averaging the judgments of as few as 5 experts in predicting the risk of positive bone scans for

prostate cancer patients yielded prediction accuracy comparable to the best clinician. Group activities

and team-based care, such as case conferences, expert consultation, and morning rounds, represent

conventional methods to leverage the “wisdom of the crowd” (Radcliffe et al. 2019).

Lastly, we demonstrate that CbC is always the optimal policy when doctors can account for random

errors effectively. To ensure the success of CbC, policymakers may organize training programs to

raise doctors’ awareness of patient health illiteracy and ensure that doctors communicate medical

information in an understandable manner (see, e.g., the health literacy professional education and

training provided by the Agency for Healthcare Research and Quality2). Various tools, including

visual-based information, have the potential to address doctor error calibration problems and mitigate

base-rate neglect (Roy and Lerch 1996, Ohlert and Weißenberger 2015).

8.2. Limitations and Future Directions

This study has several limitations, which can serve as potential directions for future research. First,

our examination of the SDM process primarily involves the doctor acting as a “technical expert,” pro-

viding patients with relevant information, and allowing patients to make the final treatment decision.

However, SDM can be implemented in various ways. For example, the doctor may predict treat-

ment prognoses and then elicit patient preferences to guide the treatment choice. While our focus in

the present paper is to capture the core elements of a “co-production” process between doctors and

patients, future work could compare different SDM approaches and identify the optimal design for

the SDM process.

Second, in our comparison of SDM and EBM performance, we do not account for the time disad-

vantage associated with SDM. In reality, engaging in SDM typically consumes more time for doctors

compared to simply following EBM recommendations. Future research could explore the time aspects

of SDM and its impact on clinical practice.

Third, our analysis considers treatment prognoses under two options along only one attribute,

assuming a linear utility model. Future work may delve into scenarios involving a non-linear, multi-

attribute utility model and offer a more comprehensive perspective on SDM.
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APPENDIX

The appendices are organized as follows. In Appendix A, we present supplementary analysis for Section

6. In Appendix B, we present proofs for the results in the present paper. In Appendix C, we present

the proofs of additional appendix lemmas used to prove the main results in the paper.

Throughout the proofs, fZ(z) and Φ(z) denote the probability density function (pdf) and the

cumulative distribution function (cdf) of the standard normal distribution at point z, respectively.

fX(x;µ,σ) represents normal pdf with mean µ and standard deviation σ at point x. We denote

∆µX = µA−µB and recall that ∆µX < 0 by design. Fγ(.) denotes the cdf of the logistic distribution

and it is equal to:

Fγ(x) :=
1

1 + e−x
, (28)

whereas fγ(.) denotes the pdf of the logistic distribution and it is equal to:

fγ(x) :=
e−x

(1 + e−x)2
. (29)

Furthermore, let us define σ̄1 and σ̄ as:

σ̄1 :=
σ2
X√

σ2
X +σ2

d

, (30)

σ̄ :=
σ2
X

σ2
X +αdσ2

d

√
σ2
X +σ2

d. (31)

Now, consider the random variable Vk, which denotes the value of patient k along a particular attribute.

Since we have Vk ∼ Unif [v, v̄], µV = v+v̄

2
and σV = v̄−v

2
√

3
, the upper and lower bounds of the random

variable Vk, v̄ and v, could be written as below in terms of µV and σV .

v̄= µV +
√

3σV , v= µV −
√

3σV . (32)

Since v < 0 holds by assumption, we need to have:

σV >µV /
√

3. (33)

Finally, I{A} denotes the indicator random variable associated with event A that has value 1 if event

A occurs and has value 0 otherwise.

Appendix A: Supplementary Results and Analysis
A.1. Supplementary Results for Section 6

This section provides the details on the characterization of PSDM given with (5).

Lemma 1 Let doctors and patients be boundedly rational and doctors be miscalibrated. Then, for a

particular patient with the signal Skt = skt, the doctor conducts SDM if and only if

skA− skB ≥−(µA−µB)
αdσ

2
d

σ2
X

or skA− skB ≤−Kmσ
2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

(34)
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holds, where Km = αpf(σV )σp and f(σV )≥ 0 is a decreasing function of σV with limσV→µV /
√

3 f(σV ) =

∞ and limσV→∞ f(σV ) = 0. Then, the probability that the miscalibrated doctor conducts SDM, denoted

by P b
SDM , is equal to:

PSDM = PSkt

(
SkA−SkB ≥−(µA−µB)

αdσ
2
d

σ2
X

)
+PSkt

(
SkA−SkB ≤−Kmσ

2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

)
.

(35)

Figure 4 illustrates Lemma 1 by demonstrating the SDM and EBM decisions of a miscalibrated doctor

with respect to skA−skB, i.e., the difference between the prognoses under treatment A and B observed

through the signal. Accordingly, the doctor conducts SDM if and only if the difference between the

prognoses under treatment A and B observed through the signal is sufficiently large. Namely, for a

given patient, if the doctor observes, through the noisy signal, a lot higher prognosis under treatment

A than B (Region 3), contrary to the average patient’s prognosis difference (recall that ∆µX < 0),

Treatment A is likely to bring higher utility than Treatment B, i.e., the recommendation of EBM,

since the probability of having a patient with a positive value for the attribute is higher than 1/2

(due to µV > 0). In this case, the doctor engages in SDM to inform the patient that their individual

prognoses are substantially different from the average, which corresponds to the value of personalized

medicine.

Similarly (perhaps, less intuitively), for a given patient, if the doctor observes, through the noisy

signal, a lot lower prognosis under treatment A than B, and the two treatments perform differently

(Region 1), the doctor’s perceived expected utility for SDM is higher than that for EBM. The net

perceived expected benefit of SDM over EBM in this case, indeed, is affected by two opposing forces,

namely the value of preference integration through SDM and the risk of selecting the wrong treatment

in SDM due to patient errors, and in Region 1, the first one dominates the second one. That is,

because the two treatments perform differently, the probability that the erroneous patient in SDM—

by messing up the forecasts—selects the treatment with a lower utility is low, whereas following

EBM (equivalently pursuing treatment B) might lead to a significant utility loss if the realization of

the patient’s value for the attribute is negative—making crucial to let the patient incorporate their

preferences.

Figure 4 SDM and EBM decisions of the miscalibrated doctor
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Next, using the real expected utilities for SDM and EBM in (16) and (17), in the following lemma,

we characterize the optimal SDM/EBM decisions that should have been made under CbC with the

miscalibrated physician’s forecasts given the signal Skt = skt.

Lemma 2 Let doctors and patients be boundedly rational and doctors be miscalibrated. Furthermore,

let K = f(σV )σp, where f(σV ) ≥ 0 is a decreasing function of σV with limσV→µV /
√

3 f(σV ) =∞ and

limσV→∞ f(σV ) = 0. Then, under CbC, the following statements hold:

(a) If the doctor is overconfident (αd < 1, αp < 1), for a particular patient with the signal Skt = skt,

the doctor should conduct SDM if and only if

skA− skB ≥−(µA−µB)
σ2
d

σ2
X

or skA− skB ≤−K
σ2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

(36)

holds.

(b) Let the doctor be underconfident (αd > 1, αp > 1). Then:

(i) If K ≥ −(µA − µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d
, the doctor should conduct SDM for a particular patient with the

signal Skt = skt if and only if (36) holds.

(ii) If K < −(µA − µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d
, the doctor should conduct SDM for a particular patient with the

signal Skt = skt if and only if

skA− skB ≤−(µA−µB)
σ2
d

σ2
X

or skA− skB ≥−K
σ2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

(37)

holds.

Proofs for the Supplementary Results in Appendix A.1.

For the proof of the lemmas in Appendix A.1, we need the following lemma, which we prove in

Appendix C.

Lemma A1 Let us define the function H(y) for y ∈ (−∞,∞):

H (y) :=EVk

[
VkFγ

(
Vky

αpσp

)]
, (38)

where Fγ(.) is introduced in (28).

1. There exists a unique y∗ < 0 satisfying H(y) =EVk
[
VkFγ

(
Vky

αpσp

)]
= 0 such that H(y)≥ 0 if y≥ y∗,

and H(y)< 0 if y < y∗.

2. y∗ is linear and it decreases in σp and αp, and increases in σV . Hence, we have y∗ =−αpf(σV )σp,

where f(σV )≥ 0 is a decreasing function of σV with limσV→µV /
√

3 f(σV ) =∞ and limσV→∞ f(σV ) =

0.
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Now, we are ready to prove Lemmas 1 and 2 using Lemma A1.

Proof of Lemma 1: First, consider H(y) introduced in (38). By (22), given the signal Skt = skt, the

forecast of the miscalibrated doctor for xkA−xkB is equal to:

x̂mkA− x̂mkB =
σ2
X

σ2
X +αdσ2

d

(skA− skB) +
αdσ

2
d

σ2
X +αdσ2

d

(µA−µB). (39)

Now, recall from Section 6 that the expected utility difference between SDM and EBM predicted by

the miscalibrated doctor for a particular patient k with X̂m
kt = x̂mkt are given by:

USDM (x̂mkt)−UEBM (x̂mkt) =EVk [Vk (x̂mkA− x̂mkB)Pm(Vk, x̂
m
kt)] . (40)

The miscalibrated doctor, upon observing the signal Skt = skt, conducts SDM for a particular patient

k if and only if USDM (x̂mkt)−UEBM (x̂mkt)≥ 0 holds. By the definition of H(y) in (38), USDM (x̂mkt)−
UEBM (x̂mkt) is equal to:

USDM (x̂mkt)−UEBM (x̂mkt) = (x̂mkA− x̂mkB)H(x̂mkA− x̂mkB), (41)

Now, in (41), we will separately investigate the sign of x̂mkA − x̂mkB and H(x̂mkA − x̂mkB). Using Lemma

A1 and letting Km = αpf(σV )σp (see Lemma A1 and note that −Km here corresponds to y∗ there),

we have:

H(−Km) =EVk

[
VkFγ

(
−VkKm

αpσp

)]
= 0, (42)

H(x̂mkA− x̂mkB) =EVk

[
VkFγ

(
Vk(x̂

m
kA− x̂mkB)

αpσp

)]
> 0; for all x̂mkt with x̂mkA− x̂mkB >−Km, and

H(x̂mkA− x̂mkB) =EVk

[
VkFγ

(
Vk(x̂

m
kA− x̂mkB)

αpσp

)]
< 0; for all x̂mkt with x̂mkA− x̂mkB <−Km. (43)

Finally, using (41), (43) and accounting for the sign of x̂mkA− x̂mkB, we can conclude that

USDM (x̂mkt)−UEBM (x̂mkt) =EVk

[
Vk(x̂

m
kA− x̂mkB)Fγ

(
Vk(x̂

m
kA− x̂mkB)

αpσp

)]
≥ 0 for all x̂mkt

with x̂mkA− x̂mkB ≥ 0 or x̂mkA− x̂mkB ≤−Km; and (44)

USDM (x̂mkt)−UEBM (x̂mkt) =EVk

[
Vk(x̂

m
kA− x̂mkB)Fγ

(
Vk(x̂

m
kA− x̂mkB)

αpσp

)]
< 0

for all x̂mkt with −Km < x̂mkA− x̂mkB < 0. (45)

When we replace x̂mkA− x̂mkB in (44) and (45) with
σ2
X

σ2
X

+αdσ
2
d
(skA− skB) +

αdσ
2
d

σ2
X

+αdσ
2
d
(µA−µB) using (39),

we conclude that the doctor conducts SDM for a patient (i.e., USDM (x̂mkt)−UEBM (x̂mkt)≥ 0 holds) if

and only if we have skA− skB ≥−(µA−µB)
αdσ

2
d

σ2
X

or skA− skB ≤−Kmσ2
X+αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

.

�

Proof of Lemma 2: Recall from Section 6 that the expected actual utility difference between SDM

and EBM for a miscalibrated doctor who shares the forecast X̂m
kt = x̂mkt upon observing the signal

Skt = skt is equal to:

USDM
a (skt)−UEBM

a (skt) =EVk [Vk (E[XkA | SkA = skA]−E[XkB | SkB = skB])P (Vk, x̂
m
kt)]
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=EVk
[
Vk

(
E[XkA | SkA = skA]−E[XkB | SkB = skB]

)
Fγ

(
Vk (x̂mkA− x̂mkB)

σp

)]
=
(
E[XkA | SkA = skA]−E[XkB | SkB = skB]

)
EVk
[
VkFγ

(
Vk (x̂mkA− x̂mkB)

σp

)]
, (46)

where E[Xkt|Skt] and X̂m
kt are given with (10) and (21), respectively. The miscalibrated doctor, upon

observing the signal Skt = skt, should conduct SDM if and only if USDM
a (skt)−UEBM

a (skt)≥ 0 holds.

Now, similar to the proof of Lemma 1, let us define the function H(y) for y ∈ (−∞,∞) in the following

way:

H(y) =EVk
[
VkFγ

(
Vky

σp

)]
. (47)

By the definition of H(y) in (47), USDM
a (skt)−UEBM

a (skt) is equal to:

USDM
a (skt)−UEBM (skt) =

(
E[XkA | SkA = skA]−E[XkB | SkB = skB]

)
H
(
x̂mkA− x̂mkB

)
. (48)

Now, in (48), we will separately analyze the sign of E[XkA | SkA = skA] − E[XkB | SkB = skB] and

H
(
x̂mkA− x̂mkB

)
. Setting αp = 1 in Lemma A1 and letting K = f(σV )σp (see Lemma A1 and note that

−K here corresponds to y∗ there), we have:

H(−K) =EVk

[
VkFγ

(
−VkK
σp

)]
= 0,

H
(
x̂mkA− x̂mkB

)
> 0; for all x̂mkt with x̂mkA− x̂mkB >−K, and

H
(
x̂mkA− x̂mkB

)
< 0; for all x̂mkt with x̂mkA− x̂mkB <−K. (49)

When we replace x̂mkA− x̂mkB in (49) with
σ2
X

σ2
X

+αdσ
2
d
(skA− skB) +

αdσ
2
d

σ2
X

+αdσ
2
d
(µA−µB) using (39), we have:

H
(
x̂mkA− x̂mkB

)
> 0; if skA− skB >−K

σ2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

,

H
(
x̂mkA− x̂mkB

)
< 0; if skA− skB <−K

σ2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

, (50)

whereas E[XkA | SkA = skA]−E[XkB | SkB = skB] is nonnegative if and only if skA−skB ≥−(µA−µB)
σ2
d

σ2
X

holds (see (11)). Next, we will analyze parts (a) and (b) of this lemma separately:

Part (a): When the doctor is overconfident (αd < 1, αp < 1), we have −K σ2
X+αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X
≤

−(µA − µB)
σ2
d

σ2
X

. Then, using (48), (50) and accounting for the sign of E[XkA | SkA = skA]− E[XkB |

SkB = skB], we can conclude that

USDM
a (skt)−UEBM

a (skt)≥ 0 if and only if skA− skB ≥−(µA−µB)
σ2
d

σ2
X

, or

skA− skB ≤−K
σ2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

. (51)
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Part (b)(i): When the doctor is underconfident (αd > 1, αp > 1) and K ≥−(µA−µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d

holds, we

have −K σ2
X+αdσ

2
d

σ2
X
− (µA−µB)

αdσ
2
d

σ2
X
≤−(µA−µB)

σ2
d

σ2
X

. Then, using (48), (50) and accounting for the sign

of E[XkA | SkA = skA]−E[XkB | SkB = skB], we again obtain (51) for the sign of USDM
a (skt)−UEBM

a (skt).

Part (b)(ii): When the doctor is underconfident (αd > 1, αp > 1) and K <−(µA−µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d

holds,

we have −K σ2
X+αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X
>−(µA−µB)

σ2
d

σ2
X

. Then, using (48), (50) and accounting for the

sign of E[XkA | SkA = skA]−E[XkB | SkB = skB], we can conclude that

USDM
a (skt)−UEBM

a (skt)≥ 0 if and only if skA− skB ≤−(µA−µB)
σ2
d

σ2
X

, or

skA− skB ≥−K
σ2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

. (52)

�

Appendix B: Proofs of Results
B.1. Proof of Section 4 Results

Proof of Proposition 1: (a) Given Vk = vk and Xkt = xkt for a particular patient k, by (7) and (8),

the expected utility difference between SDM and EBM (perceived by the doctor) is equal to :

USDM(xkt)−UEBM(xkt) =EVk [Vk(xkA−xkB)P (Vk, xkt)]

=EVk [max{Vk(xkA−xkB),0}] , (53)

where P (Vk, xkt) is given with (6) and the second equality follows from the definition of P (Vk, xkt).

Since USDM(xkt)− UEBM(xkt) given with (53) is nonnegative for any xkt, SDM probability of the

physician under CbC is:

PXkt
(
USDM(Xkt)−UEBM(Xkt)≥ 0

)
= 1.

To that end, CbC is equivalent to SDM.

(b) Let Ud denote the expected utility difference between CbC (or, equivalently, SDM) and EBM with

a perfectly rational physician and patients. By (53), Ud is equal to:

Ud =EVk,Xkt [max{Vk(XkA−XkB),0}] . (54)

Since max{Vk(XkA−XkB),0} ≥ 0, Ud ≥ 0 always holds.

�

B.2. Proof of Section 5 Results

Proof of Proposition 2: (a) Consider Lemma 1 with αp = αd = 1, which corresponds to a sophisti-

cated doctor. It directly follows from (35) that PSDM < 1 as long as σp > 0 holds.
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(b) For any observed signal Skt = skt, consider the perceived expected SDM and EBM utilities,

USDM(x̂kt) and UEBM(x̂kt), given with (14) and (15), as well as the actual expected SDM and EBM

utilities, USDM
a (skt) and UEBM

a (skt), given with (16) and (17). Noting that x̂kt = E[Xkt|Skt = skt], it

is straightforward to see that USDM(x̂kt) =USDM
a (skt) and UEBM(x̂kt) =UEBM

a (skt) hold for all real-

izations of the signal (for all skt ∈ (−∞,∞)). Then, by (18), (19) and (20), we have P SDM
W = PEBM

W =

PW = 0.

�

Proof of Proposition 3: First, we will introduce the expressions for the expected utilities of SDM,

EBM, and CbC. The expected utility provided by SDM, denoted by EUSDM , is equal to:

EUSDM =EVk,Xkt
[
VkXkAP

(
Vk, X̂kt

)
+VkXkB

(
1−P

(
Vk, X̂kt

))]
, (55)

where X̂kA − X̂kB is given with (11). On the other hand, the expected utility of EBM, denoted by

EUEBM , is equal to:

EUEBM =EVk,XkB [VkXkB]. (56)

Furthermore, the expected utility of CbC, denoted by EUCBC , is equal to:

EUCBC =EVk,Xkt

[(
VkXkAP

(
Vk, X̂kt

)
+VkXkB

(
1−P

(
Vk, X̂kt

)))
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}]
+EVk,XkB

[
VkXkBI

{
USDM(X̂kt)−UEBM(X̂kt)< 0

}]
, (57)

where USDM(x̂kt) and UEBM(x̂kt) are defined in (14) and (15), whereas X̂kt is a random variable

which is a function of the signal Skt and it is given with (11).

(a) Recalling that X̂kt = E[Xkt | Skt] (see (10)) for a sophisticated doctor, we can write the expected

utility difference between SDM and EBM, denoted by USE
d , as:

USE
d =EUSDM −EUEBM

=EVk,Skt,Xkt
[
Vk(XkA−XkB)P

(
Vk, X̂kt

)]
=EVk,Skt,Xkt [Vk(XkA−XkB)P (Vk,E[Xkt | Skt])]

=EVk,Skt
[
EXkt [Vk(XkA−XkB)P (Vk,E[Xkt | Skt]) | Vk, Skt]

]
=EVk,Skt

[
EXkt [(XkA−XkB) | Vk, Skt]VkP (Vk,E[Xkt | Skt])

]
=EVk,Skt [(E[XkA | SkA]−E[XkB | SkB])VkP (Vk,E[Xkt | Skt])]

=EVk,Skt

[
(E[XkA | SkA]−E[XkB | SkB])VkFγ

(
Vk (E[XkA | SkA]−E[XkB | SkB])

σp

)]
=EVk,Z

[
Vk(∆µX + σ̄1Z)Fγ

(
Vk (∆µX + σ̄1Z)

σp

)]
, (58)
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where the subscripts in the expectations indicate what variable the expectation is taken over, and

P (Vk, x̂kt) and Fγ(.) are given with (13) and (28), respectively. The second equality follows from

(55) and (56), the third equality follows from substituting E[Xkt | Skt] for X̂kt, the fourth equality

follows from the law of iterated expectations, and the fifth equality follows from the fact that when Vk

and Skt are given, VkP (Vk,E[Xkt | Skt]) is not random anymore. The sixth equality follows from the

independence of Skt and Vk, and the seventh equality follows from replacing P (Vk,E[Xkt | Skt]) with

the cdf of the standard logistic distribution, Fγ(.), which is defined in (28). Finally, we obtain the

last equality from the following argument: We can plug
σ2
X

σ2
X

+σ2
d
(SkA − SkB) +

σ2
d

σ2
X

+σ2
d
∆µX for E[XkA |

SkA]−E[XkB | SkB] by (11). As Skt is given with (9), we have:

E[XkA | SkA]−E[XkB | SkB] =
σ2
X

σ2
X +σ2

d

(SkA−SkB) +
σ2
d

σ2
X +σ2

d

∆µX = ∆µX + σ̄1Z, (59)

where Z is a standard normal random variable, and σ̄1 is given with (30).

Finally, we will show that USE
d becomes negative under certain conditions, e.g., when σp is suffi-

ciently high. The derivative of USE
d with respect to σp is

dUSE
d

dσp
=−EVk,Z

[
V 2
k

σ2
p

(∆µX + σ̄1Z)2fγ

(
Vk (∆µX + σ̄1Z)

σp

)]
,

where we interchange the expectation and differentiation by resting on the Dominated Convergence

Theorem. Moreover, fγ(.) is introduced in (29) and it denotes the pdf of the standard logistic distribu-

tion. Since we have
dUSEd
dσp

< 0, it follows that USE
d decreases in σp. Furthermore, one can easily confirm

that USE
d > 0 as σp→ 0, whereas USE

d = µV ∆µX/2 < 0 as σp→∞. This shows that USE
d becomes

negative under certain conditions, e.g., when σp is sufficiently high.

(b) Part I: The expected utility difference between CbC and EBM, denoted by UCE
d , is equal to:

UCE
d =EUCBC −EUEBM

=EVk,Skt,Xkt
[
Vk(XkA−XkB)P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}]
=EVk,Skt

[
EXkt

[
Vk(XkA−XkB)P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}∣∣∣∣Vk, Skt]]
=EVk,Skt

[
EXkt [(XkA−XkB) | Vk, Skt]VkP

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}]
=EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}]
(60)

=ESkt

[
EVk

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}∣∣∣∣Skt]]
=ESkt

[
EVk

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)
| Skt

]
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}]
=ESkt

[
EVk

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)]
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}]
=ESkt

[(
USDM
a (Skt)−UEBM

a (Skt)
)
I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}]
≥ 0,
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where the second equality follows from (56) and (57), the third equality follows from the law

of iterated expectations, and the fourth equality follows from the fact that when Vk and Skt

are given, VkP (Vk,E[Xkt | Skt])I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}
is not random anymore. The fifth

equality follows from the independence of Skt and Vk, the sixth equality follows from the law

of iterated expectations, and the seventh equality follows from the fact that when Skt is given,

I
{
USDM(X̂kt)−UEBM(X̂kt)≥ 0

}
is not random anymore. Moreover, the eighth equality follows from

the independence of Vk and Skt, and the last equality follows from (16) and (17). Finally, the last

inequality (the nonnegativity of UCE
d ) holds since we have USDM(x̂kt) =USDM

a (skt) and UEBM(x̂kt) =

UEBM
a (skt) for any given signal Skt = skt.

Part II: The expected utility difference between CbC and SDM, denoted by UCS
d , is equal to:

UCS
d =EUCBC −EUSDM

=−EVk,Skt,Xkt
[
Vk(XkA−XkB)P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}]
=−EVk,Skt

[
EXkt

[
Vk(XkA−XkB)P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}∣∣∣∣Vk, Skt]]
=−EVk,Skt

[
EXkt [(XkA−XkB) | Vk, Skt]VkP

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}]
=−EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}]
(61)

=−ESkt

[
EVk

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}∣∣∣∣Skt]]
=−ESkt

[
EVk

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)
| Skt

]
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}]
=−ESkt

[
EVk

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂kt

)]
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}]
=−ESkt

[(
USDM
a (Skt)−UEBM

a (Skt)
)
I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}]
≥ 0,

where the second equality follows from (55) and (57), the third equality follows from the law

of iterated expectations, and the fourth equality follows from the fact that when Vk and Skt

are given, VkP (Vk,E[Xkt | Skt])I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}
is not random anymore. The fifth

equality follows from the independence of Skt and Vk, the sixth equality follows from the law

of iterated expectations, and the seventh equality follows from the fact that when Skt is given,

I
{
USDM(X̂kt)−UEBM(X̂kt)< 0

}
is not random anymore. Moreover, the eighth equality follows from

the independence of Vk and Skt, and the last equality follows from (16) and (17). Finally, the last

inequality (the nonnegativity of UCS
d ) holds since we have USDM(x̂kt) =USDM

a (skt) and UEBM(x̂kt) =

UEBM
a (skt) for any given signal Skt = skt.

�
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B.3. Proof of Section 6 Results

Proof of Proposition 4: Part (a) It directly follows from Lemma 1 and Lemma 2(a) that the

probability of wrong SDM, probability of wrong EBM, and probability of following the “wrong”

strategy, i.e., P SDM
W , PEBM

W , and PW , are equal to:

PEBM
W = 0,

P SDM
W = PSkt

(
−(µA−µB)

αdσ
2
d

σ2
X

≤ SkA−SkB ≤−(µA−µB)
σ2
d

σ2
X

)
+PSkt

(
−Kσ2

X +αdσ
2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

≤ SkA−SkB ≤−Kmσ
2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

)
.

Part (b)(i): First, using Lemma 1 and Lemma 2, let us set K = σpf(σV ) and Km = αpσpf(σV ), where

f(σV ) is introduced in Lemma 1 and Lemma 2 and it is a positive and decreasing function of σV .

Furthermore, let Φ =−µA−µB
f(σV )

σ2
d(αd−1)

σ2
X

+αdσ
2
d
. We have two subcases:

Case I: αpσp ≥ σp ≥Φ⇔Km ≥K ≥−(µA−µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d
. It directly follows from Lemma 1 and Lemma

2(b)(i) that the probability of wrong SDM, and the probability of wrong EBM, i.e., P SDM
W and PEBM

W ,

are equal to:

PEBM
W = PSkt

(
−(µA−µB)

σ2
d

σ2
X

≤ SkA−SkB ≤−(µA−µB)
αdσ

2
d

σ2
X

)
+PSkt

(
−Kmσ

2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

≤ SkA−SkB ≤−K
σ2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

)
,

P SDM
W = 0.

Case II: αpσp ≥ Φ ≥ σp ⇔ Km ≥ −(µA − µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d
≥ K. It directly follows from Lemma 1 and

Lemma 2(b)(ii) that the probability of wrong SDM, and the probability of wrong EBM, i.e., P SDM
W

and PEBM
W , are equal to:

PEBM
W = PSkt

(
−Kmσ

2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

≤ SkA−SkB ≤−(µA−µB)
σ2
d

σ2
X

)
+PSkt

(
−Kσ2

X +αdσ
2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

≤ SkA−SkB ≤−(µA−µB)
αdσ

2
d

σ2
X

)
,

P SDM
W = 0.

Part (b)(ii): Since αpσp < Φ ⇔ Km < −(µA − µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d

holds, we have K < Km < −(µA −

µB)
σ2
d(αd−1)

σ2
X

+αdσ
2
d
. It directly follows from Lemma 1 and Lemma 2(b)(ii) that the probability of wrong SDM

and the probability of wrong EBM, i.e., P SDM
W , and PEBM

W , are equal to:

PEBM
W = PSkt

(
−Kσ2

X +αdσ
2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

≤ SkA−SkB ≤−(µA−µB)
αdσ

2
d

σ2
X

)
,

P SDM
W = PSkt

(
−(µA−µB)

σ2
d

σ2
X

≤ SkA−SkB ≤−Kmσ
2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

)
. (62)



: Shared Medical Decision-Making Under Bounded Rationality
00(0), pp. 000–000, © 0000 INFORMS 37

Furthermore, by (35) and (62), PSDM −P SDM
W is equal to:

PSDM −P SDM
W = PSkt

(
SkA−SkB ≤−(µA−µB)

σ2
d

σ2
X

)
+PSkt

(
SkA−SkB ≥−(µA−µB)

αdσ
2
d

σ2
X

)
.

Finally, noting that SkA−SkB is normally distributed with mean µA−µB and variance σ2
X + σ2

d, we

have the following inequalities for P SDM
W and PSDM −P SDM

W :

P SDM
W = PSkt

(
SkA−SkB ≤−Kmσ

2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

)
−PSkt

(
SkA−SkB ≤−(µA−µB)

σ2
d

σ2
X

)
= 1−PSkt

(
SkA−SkB ≥−Kmσ

2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

)
−
(

1−PSkt

(
SkA−SkB ≥−(µA−µB)

σ2
d

σ2
X

))
= PSkt

(
SkA−SkB ≥−(µA−µB)

σ2
d

σ2
X

)
−PSkt

(
SkA−SkB ≥−Kmσ

2
X +αdσ

2
d

σ2
X

− (µA−µB)
αdσ

2
d

σ2
X

)
≤ PSkt

(
SkA−SkB ≥−(µA−µB)

σ2
d

σ2
X

)
= 1−PSkt

(
SkA−SkB ≤−(µA−µB)

σ2
d

σ2
X

)
≤ PSkt

(
SkA−SkB ≤−(µA−µB)

σ2
d

σ2
X

)
≤ PSkt

(
SkA−SkB ≤−(µA−µB)

σ2
d

σ2
X

)
+PSkt

(
SkA−SkB ≥−(µA−µB)

αdσ
2
d

σ2
X

)
= PSDM −P SDM

W ,

where the second inequality follows from PSkt
(
SkA−SkB ≤−(µA−µB)

σ2
d

σ2
X

)
≤ 1/2 recalling that SkA−

SkB is normally distributed with mean µA− µB and variance σ2
X + σ2

d, and the rest follows from the

algebra.

�

Proof of Proposition 5: Replacing X̂kt with X̂m
kt in (55), (56) and (57), we obtain the expected

utility for SDM, EBM and CbC for the miscalibrated doctor.

(a) In this part, we consider a miscalibrated doctor who is not underconfident, i.e., αp, αd ≤ 1. First,

note that using (11) and (22), E[XkA | SkA]−E[XkB | SkB] could be written in terms of X̂m
kA− X̂m

kB as

follows:

E[XkA | SkA]−E[XkB | SkB] =
σ2
X +αdσ

2
d

σ2
X +σ2

d

(X̂m
kA− X̂m

kB) +
(1−αd)σ2

d

σ2
X +σ2

d

∆µX . (63)

Furthermore, the following inequalities hold by (43) and (45) in Lemma 1 when we let αp = 1:

EVk

[
VkFγ

(
Vk(x̂

m
kA− x̂mkB)

σp

)]
> 0; for all x̂mkt with x̂mkA− x̂mkB >−K, and (64)

EVk

[
Vk(x̂

m
kA− x̂mkB)Fγ

(
Vk(x̂

m
kA− x̂mkB)

σp

)]
< 0; for all x̂mkt with −K < x̂mkA− x̂mkB < 0, (65)

where K = σpf(σV ). Replacing X̂kt with X̂m
kt in (61), the expected utility difference between CbC and

SDM for the miscalibrated doctor could be written as follows:

UCS
d =−EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂

m
kt

)
I
{
USDM(X̂m

kt)−UEBM(X̂m
kt)< 0

}]



: Shared Medical Decision-Making Under Bounded Rationality
38 00(0), pp. 000–000, © 0000 INFORMS

=−EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp


I
{
USDM(X̂m

kt)−UEBM(X̂m
kt)< 0

}]

=−EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {−Km < X̂m
kA− X̂m

kB < 0
}]

=−EVk,Skt

[
Vk

(
σ2
X +αdσ

2
d

σ2
X +σ2

d

(X̂m
kA− X̂m

kB) +
(1−αd)σ2

d

σ2
X +σ2

d

∆µX

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp


I
{
−Km < X̂m

kA− X̂m
kB < 0

}]

=−σ
2
X +αdσ

2
d

σ2
X +σ2

d

EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {−Km < X̂m
kA− X̂m

kB < 0
}]

− (1−αd)σ2
d

σ2
X +σ2

d

∆µXEVk,Skt

[
VkFγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {−Km < X̂m
kA− X̂m

kB < 0
}]

=−σ
2
X +αdσ

2
d

σ2
X +σ2

d

ESkt

[
EVk

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {−Km < X̂m
kA− X̂m

kB < 0
}∣∣∣∣Skt

]]

− (1−αd)σ2
d

σ2
X +σ2

d

∆µXESkt

[
EVk

[
VkFγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {−Km < X̂m
kA− X̂m

kB < 0
}∣∣∣∣Skt

]]

=−σ
2
X +αdσ

2
d

σ2
X +σ2

d

ESkt

[
EVk

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {−Km < X̂m
kA− X̂m

kB < 0
}]]

− (1−αd)σ2
d

σ2
X +σ2

d

∆µXESkt

[
EVk

[
VkFγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {−Km < X̂m
kA− X̂m

kB < 0
}]]

≥ 0,

where Km = αpσpf(σV ) (see Lemma 1), P (Vk, x̂kt) and Fγ(.) are given with (13) and (28), respec-

tively. The second equality follows from replacing P
(
Vk, X̂

m
kt

)
with the cdf of the standard logistic

distribution, Fγ(.), the third equality follows from (45) in Lemma 1, the forth equality follows from

substituting the expression in (63) for E[XkA | SkA]−E[XkB | SkB], the fifth equality follows from the

linearity of expectation, the sixth equality follows from the law of iterated expectations, the seventh

equality follows from the independence of Vk and Skt, and the last inequality follows from (64), (65)

and αp, αd ≤ 1.

(b) In this part, we consider a miscalibrated doctor who is underconfident, i.e., αp, αd > 1. First, note

that using (11) and (22), E[XkA | SkA] − E[XkB | SkB] could be written in terms of X̂m
kA − X̂m

kB as
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follows:

E[XkA | SkA]−E[XkB | SkB] = (X̂m
kA− X̂m

kB) +
(αd− 1)σ2

Xσ
2
d

(σ2
X +σ2

d)(σ
2
X +αdσ2

d)
(SkA−SkB −∆µX). (66)

Moreover, we can, alternatively, write X̂m
kA− X̂m

kB as follows using (9) and (22).

X̂m
kA− X̂m

kB =
σ2
X

σ2
X +αdσ2

d

(SkA−SkB) +
αdσ

2
d

σ2
X +αdσ2

d

∆µX = ∆µX + σ̄Z. (67)

where Z is a standard normal random variable, and σ̄ is given with (31). Finally, in the proof, we will

need the following inequalities, which hold by (43) and (44) in Lemma 1 when we let αp = 1:

EVk

[
VkFγ

(
Vk(x̂

m
kA− x̂mkB)

σp

)]
< 0; for all x̂mkt with x̂mkA− x̂mkB <−K, and (68)

EVk

[
Vk(x̂

m
kA− x̂mkB)Fγ

(
Vk(x̂

m
kA− x̂mkB)

σp

)]
≥ 0; for all x̂mkt with x̂mkA− x̂mkB ≥ 0 or x̂mkA− x̂mkB ≤−K,

(69)

where K = σpf(σV ). Following the same steps as in (60) and replacing X̂kt there with X̂m
kt , the expected

utility difference between CbC and EBM for the miscalibrated doctor could be written as follows:

UCE
d =EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])P

(
Vk, X̂

m
kt

)
I
{
USDM(X̂m

kt)−UEBM(X̂m
kt)≥ 0

}]
=EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp


I
{
USDM(X̂m

kt)−UEBM(X̂m
kt)≥ 0

}]

=EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≥ 0
}]

+EVk,Skt

[
Vk (E[XkA | SkA]−E[XkB | SkB])Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≤−Km
}]

=EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB +
(αd− 1)σ2

Xσ
2
d

(σ2
X +σ2

d)(σ
2
X +αdσ2

d)
(SkA−SkB −∆µX)

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp


I
{
X̂m
kA− X̂m

kB ≥ 0
}]

+EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB +
(αd− 1)σ2

Xσ
2
d

(σ2
X +σ2

d)(σ
2
X +αdσ2

d)
(SkA−SkB −∆µX)

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp


I
{
X̂m
kA− X̂m

kB ≤−Km
}]

=EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≥ 0
}]
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+EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≤−Km
}]

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)(σ
2
X +σ2

d)
EVk,Skt

[
Vk(SkA−SkB −∆µX)Fγ

(
Vk (∆µX + σ̄Z)

σp

)
I
{
X̂m
kA− X̂m

kB ≥ 0
}]

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)(σ
2
X +σ2

d)
EVk,Skt

[
Vk(SkA−SkB −∆µX)Fγ

(
Vk (∆µX + σ̄Z)

σp

)
I
{
X̂m
kA− X̂m

kB ≤−Km
}]

=EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≥ 0
}]

+EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≤−Km
}]

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

EVk,Z

[
VkZFγ

(
Vk (∆µX + σ̄Z)

σp

)
I {∆µX + σ̄Z ≥ 0}

]

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

EVk,Z

[
VkZFγ

(
Vk (∆µX + σ̄Z)

σp

)
I {∆µX + σ̄Z ≤−Km}

]

=EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≥ 0
}]

+EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≤−Km
}]

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

∫ v̄

v

∫ ∞
−∆µX
σ̄

vk
v̄− v

zFγ

(
vk (∆µX + σ̄z)

σp

)
fZ(z)dzdvk

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

∫ v̄

v

∫ −Km−∆µX
σ̄

−∞

vk
v̄− v

zFγ

(
vk (∆µX + σ̄z)

σp

)
fZ(z)dzdvk

=EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≥ 0
}]

+EVk,Skt

[
Vk

(
X̂m
kA− X̂m

kB

)
Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp

I {X̂m
kA− X̂m

kB ≤−Km
}]

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

σ̄

σp

∫ v̄

v

∫ ∞
−∆µX
σ̄

v2
k

v̄− v
fγ

(
vk (∆µX + σ̄z)

σp

)
fZ(z)dzdvk

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

µV Fγ(0)fZ

(
−∆µX
σ̄

)

+
σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

σ̄

σp

∫ v̄

v

∫ −Km−∆µX
σ̄

−∞

v2
k

v̄− v
fγ

(
vk (∆µX + σ̄z)

σp

)
fZ(z)dzdvk

− σ2
X(αd− 1)σ2

d

(σ2
X +αdσ2

d)
√
σ2
X +σ2

d

EVk

[
VkFγ

(
−Km

σp

)]
fZ

(
−Km−∆µX

σ̄

)
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≥ 0,

where Km = αpσpf(σV ) (see Lemma 1), Z is a standard normal random variable, and P (Vk, x̂kt) and

Fγ(.) are given with (13) and (28), respectively. The second equality follows from replacing P
(
Vk, X̂

m
kt

)
with the cdf of the standard logistic distribution, Fγ(.), the third equality follows from (44) in Lemma

1, the forth equality follows from substituting the expression in (66) for E[XkA | SkA]−E[XkB | SkB],

the fifth equality follows from the linearity of expectation, the sixth equality follows from (67) and

replacing SkA−SkB −∆µX with
√
σ2
X +σ2

dZ, the seventh equality follows from the definition of the

expectation, and the eighth equality follows from integration by parts. Finally, the last inequality

follows from (68), (69) and αp, αd ≥ 1.

�

B.4. Proof of Section 7 Results

For the proof of Proposition 6, we need the following lemmas, which we prove in Appendix C.

Lemma A2 Let Zv and Z denote standard uniform and standard normal random variables, respec-

tively. Note that Zv is distributed between −
√

3 and
√

3, where v = µV −
√

3σV and v̄ = µV +
√

3σV .

Furthermore, let G denote:

G :=EZv ,Z
[
Zv(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A}

]
+EZv ,Z

[Zv
σp

(µV +σVZv)(∆µX + σ̄1Z)(∆µX + σ̄Z)

fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A}

]
, (70)

where A is an integrable set, σ̄1 and σ̄ are given with (30) and (31) with 0≤ αd ≤ 1. If the condition

EZ
[
(∆µX + σ̄1Z)(∆µX + σ̄Z)

fγ

((µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A} |Zv = zv

]
≥ 0 (71)

holds for any zv ∈ [−
√

3,
√

3], we have G≥ 0.

Lemma A3 Let Z denote a standard normal variable. The following inequality

EZ
[
(∆µX + σ̄1Z)(∆µX + σ̄Z)fγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
≥ 0 (72)

holds for any vk ∈ [v, v̄], where σ̄1 and σ̄ are given with (30) and (31) with 0≤ αd ≤ 1.

Now, we are ready to prove Proposition 6 using Lemmas A2 and A3. Note that throughout the

proof of Proposition 6, we interchange the derivative and expectation by resting on the Dominated

Convergence Theorem.
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Proof of Proposition 6: We will first derive the expression for the expected utility difference between

SDM and EBM when the doctor is miscalibrated. Following the same steps as in (58) and replacing

X̂kt with X̂m
kt in (58), we can write the expected utility difference between SDM and EBM for the

miscalibrated doctor as:

USE
d =EVk,Skt

Vk (E[XkA | SkA]−E[XkB | SkB])Fγ

Vk
(
X̂m
kA− X̂m

kB

)
σp


=EVk,Z

[
Vk(∆µX + σ̄1Z)Fγ

(
Vk (∆µX + σ̄Z)

σp

)]
, (73)

where the second equality follows from (59) and (67).

(a) Replacing Vk with µV +σVZv in (73), where Zv is a standard uniform random variable distributed

between −
√

3 and
√

3, USE
d could be written as:

USE
d =EZv ,Z

[
(µV +σVZv)(∆µX + σ̄1Z)Fγ

((µV +σVZv)(∆µX + σ̄Z)

σp

)]
. (74)

The derivative of USE
d in (74) with respect to σV is:

dUSE
d

dσV
=EZv ,Z

[
Zv(∆µX + σ̄1Z)Fγ

((µV +σVZv)(∆µX + σ̄Z)

σp

)]
+EZv ,Z

[
Zv(µV +σVZv)

σp
(∆µX + σ̄1Z)(∆µX + σ̄Z)fγ

((µV +σVZv)(∆µX + σ̄Z)

σp

)]
. (75)

Case 1: αd ∈ [0,1]. When the doctor is not underconfident about their own errors, i.e., αd ∈ [0,1],
dUSEd
dσV
≥ 0 immediately follows from Lemma A2 and Lemma A3.

Case 2: αd ∈ (1,∞). When the doctor is underconfident about their own errors, i.e., αd ∈ (1,∞), we

rewrite
dUSEd
dσV

in (75) as follows:

dUSE
d

dσV

=

∫ √3

−
√

3

∫ ∞
−∞

zv

2
√

3
(∆µX + σ̄1z)Fγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

+

∫ √3

−
√

3

∫ ∞
−∞

zv(µV +σV zv)

2
√

3σp
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

=

∫ √3

−
√

3

∫ ∞
−∞

zv

2
√

3σ̄
(∆µX + σ̄z)((∆µX + σ̄1z)z− σ̄1)Fγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv, (76)

where the first equality follows from the definition of expectation, and the last equality follows from

integration by parts. Now, let U1 and U2 denote:

U1 =−
∫ √3

−
√

3

∫ ∞
−∞

σ̄1zv

2
√

3σ̄
(∆µX + σ̄z)Fγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

+

∫ √3

−
√

3

∫ −∆µX/σ̄1

0

zv

2
√

3σ̄
(∆µX + σ̄z)(∆µX + σ̄1z)zFγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv,
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U2 =

∫ √3

−
√

3

∫ 0

−∞

zv

2
√

3σ̄
(∆µX + σ̄z)(∆µX + σ̄1z)zFγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

+

∫ √3

−
√

3

∫ ∞
−∆µX/σ̄1

zv

2
√

3σ̄
(∆µX + σ̄z)(∆µX + σ̄1z)zFγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv.

Then,
dUSEd
dσV

in (76) is equal to U1 +U2. Furthermore, one can easily verify that U1 decreases in σV ,

whereas U2 increases in σV . Hence, we have the following inequalities for
dUSEd
dσV

:

dUSE
d

dσV
≥
(

lim
σV→∞

U1

)
+U2

=
3

4
√

3σ̄

(
∆µX σ̄1PZ(Z ≤−∆µX/σ̄)−∆µX(σ̄1 + σ̄) (PZ(Z ≤−∆µX/σ̄1)−PZ(Z ≤ 0))

−∆µX σ̄1PZ(Z ≥−∆µX/σ̄)− 2σ̄σ̄1fZ(−∆µX/σ̄)− (∆µX)2fZ(0)

+ 2σ̄σ̄1fZ(−∆µX/σ̄1)− 2σ̄σ̄1fZ(0)
)

+U2.

(77)

Since U2 increases in σV , the expression in (77) is an increasing function of σV and it approaches

3
4
√

3σ̄

(
2σ̄σ̄1fZ(−∆µX/σ̄)−∆µX σ̄(2PZ(Z ≤−∆µX/σ̄)− 1)

)
as σV tends to infinity. This implies that

there is a unique σ∗V such that the expression in (77) is nonnegative if and only if σV ≥ σ∗V holds, i.e.,

if σV is sufficiently high. Since the expression in (77) is a lower bound for
dUSEd
dσV

, we can conclude that
dUSEd
dσV

is also nonnegative for sufficiently high σV (σV ≥ σ∗V ).

(b) The derivative of USE
d with respect to σ2

X is:

dUSE
d

d(σ2
X)

=
dσ̄1

d(σ2
X)

EVk,Z
[
VkZFγ

(Vk(∆µX + σ̄Z)

σp

)]
+

dσ̄

d(σ2
X)

EVk,Z
[V 2

k

σp
Z(∆µX + σ̄1Z)fγ

(Vk(∆µX + σ̄Z)

σp

)]
=

dσ̄1

d(σ2
X)
σ̄EVk,Z

[V 2
k

σp
fγ

(Vk(∆µX + σ̄Z)

σp

)]
+

dσ̄

d(σ2
X)

EVk,Z
[V 2

k

σp
Z(∆µX + σ̄1Z)fγ

(Vk(∆µX + σ̄Z)

σp

)]
=

dσ̄

d(σ2
X)
σ̄1EVk,Z

[V 2
k

σp

Z2 +
∆µX
σ̄1

Z +

dσ̄1

d(σ2
X

)
1
σ̄1

dσ̄
d(σ2

X
)

1
σ̄

fγ

(Vk(∆µX + σ̄Z)

σp

)]
,

where it could be easily confirmed that dσ̄
d(σ2

X
)
≥ 0. Note that z2 + ∆µX

σ̄1
z +

dσ̄1
d(σ2

X
)

1
σ̄1

dσ̄
d(σ2

X
)

1
σ̄
≥ 0 holds for all

z ∈ (−∞,∞) if (
∆µX
σ̄1

)2

≤ 4

dσ̄1

d(σ2
X

)
1
σ̄1

dσ̄
d(σ2

X
)

1
σ̄

⇔ ∆µ2
X ≤ 4σ̄σ̄1

dσ̄1

d(σ2
X

)

dσ̄
d(σ2

X
)

, (78)

which ensures the nonnegativity of
dUSEd
d(σ2

X
)
. Since the right-hand side of (78) increases in σX , it tends to

zero as σX goes to 0 and it tends to infinity as σX goes to infinity, we can conclude that there exists

a unique σ∗X that satisfies (78) with equality such that (78) holds if and only if σX ≥ σ∗X . This implies

that
dUSEd
d(σ2

X
)
≥ 0 for σX ≥ σ∗X .
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(c) The derivative of USE
d in (73) with respect to σp is:

dUSE
d

dσp
=−EVk,Z

[V 2
k

σ2
p

(∆µX + σ̄1Z)(∆µX + σ̄Z)fγ

(Vk(∆µX + σ̄Z)

σp

)]
. (79)

Case 1: αd ∈ [0,1]. When the doctor is not underconfident about their own errors, i.e., αd ∈ [0,1],
dUSEd
dσp
≤ 0 immediately follows from Lemma A3.

Case 2: αd ∈ (1,∞). When the doctor is underconfident about their own errors, i.e., αd ∈ (1,∞), we

rewrite
dUSEd
dσp

in (79) as follows:

dUSE
d

dσp
=−

∫ v̄

v

∫ ∞
−∞

v2
k

σ2
p(v̄− v)

(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

=−
∫ v̄

v

∫ −∆µX/σ̄

−∆µX/σ̄1

v2
k

σ2
p(v̄− v)

(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

−
∫ v̄

v

∫ −∆µX/σ̄1

−∞

v2
k

σ2
p(v̄− v)

(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

−
∫ v̄

v

∫ ∞
−∆µX/σ̄

v2
k

σ2
p(v̄− v)

(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk.

Since we are interested only in the sign of
dUSEd
dσp

, we will focus on σ2
p
dUSEd
dσp

, which has the same sign

with
dUSEd
dσp

but is easier to analyze:

σ2
p

dUSE
d

dσp
=−

∫ v̄

v

∫ −∆µX/σ̄

−∆µX/σ̄1

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

−
∫ v̄

v

∫ −∆µX/σ̄1

−∞

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

−
∫ v̄

v

∫ ∞
−∆µX/σ̄

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk.

(80)

In (80), one can easily confirm that the first component increases in σp, whereas the second and third

components decrease in σp. Hence, we have the following inequalities for σ2
p
dUSEd
dσp

:

σ2
p

dUSE
d

dσp
≤−

(
lim
σp→∞

∫ v̄

v

∫ −∆µX/σ̄

−∆µX/σ̄1

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

)

−
∫ v̄

v

∫ −∆µX/σ̄1

−∞

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

−
∫ v̄

v

∫ ∞
−∆µX/σ̄

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

=−E[V 2
k ]fγ(0)

(
(∆µ2

X + σ̄σ̄1)PZ(−∆µX/σ̄1 ≤Z ≤−∆µX/σ̄)

+ ∆µX σ̄1fZ(−∆µX/σ̄)−∆µX σ̄fZ(−∆µX/σ̄1)
)

−
∫ v̄

v

∫ −∆µX/σ̄1

−∞

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk
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−
∫ v̄

v

∫ ∞
−∆µX/σ̄

v2
k

(v̄− v)
(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(Vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk (81)

Note that the expression in (81) is a decreasing function of σp, and it approaches −E[V 2
k ]fγ(0)(∆µ2

X +

σ̄σ̄1) as σp tends to infinity. This implies that there is a unique σ∗p such that the expression in (80) is

nonpositive if and only if σp ≥ σ∗p holds, i.e., if σp is sufficiently high. Since the expression in (81) is

an upper bound for σ2
p
dUSEd
dσp

, we can conclude that σ2
p
dUSEd
dσp

is also nonpositive for sufficiently high σp

(σp ≥ σ∗p).

(d) The derivative of USE
d with respect to σ2

d is:

dUSE
d

d(σ2
d)

=
dσ̄1

d(σ2
d)
EVk,Z

[
VkZFγ

(Vk(∆µX + σ̄Z)

σp

)]
+

dσ̄

d(σ2
d)
EVk,Z

[V 2
k

σp
Z(∆µX + σ̄1Z)fγ

(Vk(∆µX + σ̄Z)

σp

)]
=

dσ̄1

d(σ2
d)
σ̄EVk,Z

[V 2
k

σp
fγ

(Vk(∆µX + σ̄Z)

σp

)]
+

dσ̄

d(σ2
d)
EVk,Z

[V 2
k

σp
Z(∆µX + σ̄1Z)fγ

(Vk(∆µX + σ̄Z)

σp

)]
=

dσ̄

d(σ2
d)
σ̄1EVk,Z

[V 2
k

σp

Z2 +
∆µX
σ̄1

Z +

dσ̄1

d(σ2
d
)

1
σ̄1

dσ̄
d(σ2

d
)

1
σ̄

fγ

(Vk(∆µX + σ̄Z)

σp

)]
, (82)

where dσ̄
d(σ2

d
)

is equal to

dσ̄

d(σ2
d)

=
σ2
X((1− 2αd)σ

2
X −αdσ2

d)

2(σ2
X +αdσ2

d)
2
√
σ2
X +σ2

d

.

Note that dσ̄
d(σ2

d
)

is nonpositive when αd ≥ 1/2. Furthermore, z2 + ∆µX
σ̄1

z +

dσ̄1
d(σ2

d
)

1
σ̄1

dσ̄
d(σ2

d
)

1
σ̄
≥ 0 follows for all

z ∈ (−∞,∞) if (
∆µX
σ̄1

)2

≤ 4

dσ̄1

d(σ2
d
)

1
σ̄1

dσ̄
d(σ2

d
)

1
σ̄

⇔ ∆µ2
X ≤ 4σ̄σ̄1

dσ̄1

d(σ2
d
)

dσ̄
d(σ2

d
)

, (83)

and this ensures the nonpositivity of
dUSEd
d(σ2

d
)
. The right-hand side of (83) decreases in σd (for αd ∈

[1/2,∞)), it tends to zero as σd goes to infinity and it tends to
σ2
X

2αd−1
as σd goes to zero. Hence,

if
σ2
X

2αd−1
≥∆µ2

X ⇔ σX ≥ −∆µX
√

2αd− 1 holds, we can conclude that there exists a unique σ∗d that

satisfies (83) with equality such that (83) holds if and only if σd ≤ σ∗d. This implies that we have
dUSEd
d(σ2

d
)
≤ 0 for σd ≤ σ∗d given that αd ≥ 1/2 and σX ≥−(µA−µB)

√
2αd− 1 hold.

�

Appendix C: Proofs of Appendix Lemmas

Proof of Lemma A1:

1. It is trivial to show that H(y) =EVk
[
VkFγ

(
Vky

αpσp

)]
increases in y, it is strictly negative as y tends

to infinity, and it is strictly positive when y = 0. This implies that there exists a unique y∗ < 0 such

that

EVk

[
VkFγ

(
Vky

∗

αpσp

)]
= 0, (84)
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EVk
[
VkFγ

(
Vky

αpσp

)]
< 0 if y < y∗, and EVk

[
VkFγ

(
Vky

αpσp

)]
> 0 if y > y∗.

2. Recall that y∗ satisfies (84) when y < 0. Applying implicit differentiation to (84), the derivative of

y∗ with respect to σp is:

dy∗

dσp
=−

∂EVk
[
VkFγ

(
Vky

αpσp

)]
/∂σp

∂EVk
[
VkFγ

(
Vky

αpσp

)]
/∂y

=−
− y
αpσ2

p
EVk

[
V 2
k fγ

(
Vky

αpσp

)]
1

αpσp
EVk

[
V 2
k fγ

(
Vky

αpσp

)] =
y

σp
,

where we interchange the expectation and the differentiation by resting on the Dominated Convergence

Theorem, and fγ(.) is given with (29). The above equation implies that y∗ is decreasing and linear in

σp. We can show that y∗ is decreasing and linear in αp as well following the same steps as the proof

for σp, and thus we skip it.

On the other hand, to analyze the behavior of y∗ in σV , first let us rewrite (84) in the following

way:

EZv
[
(µV +σVZv)Fγ

(
(µV +σVZv)y

αpσp

)]
= 0, (85)

where Zv is a standard uniform random variable with mean zero and standard deviation 1, distributed

between −
√

3 and
√

3. Furthermore, v in (84) is equal to µV −
√

3σV and v̄ in (84) is equal to

µV +
√

3σV . Applying implicit differentiation to (85), the derivative of y∗ with respect to σV is:

dy∗

dσV
=−

∂EZv
[
(µV +σVZv)Fγ

(
(µV +σV Zv)y

σp

)]
/∂σV

∂EZv
[
(µV +σVZv)Fγ

(
(µV +σV Zv)y

σp

)]
/∂y

=−
EZv

[
ZvFγ

(
(µV +σV Zv)y

αpσp

)]
+ y

αpσp
EZv

[
Zv(µV +σVZv)fγ

(
(µV +σV Zv)y

αpσp

)]
1

αpσp
EZv

[
(µV +σVZv)2fγ

(
(µV +σV Zv)y

αpσp

)] ,

where we interchange the expectation and the differentiation by resting on the Dominated Convergence

Theorem. The denominator of the above expression is trivially nonnegative. The nonnegativity of the

numerator follows from Claim 1 proved at the end of this lemma. This proves the increasing nature

of y∗ in σV . Finally, note that as σV → µV /
√

3 (i.e., v→ 0 by (32)), H(y) becomes nonnegative for

all y ∈ (−∞,∞), which implies that y∗ tends to minus infinity and f(σV ) tends to plus infinity. On

the other hand, as σV →∞, H(y) is nonnegative for all y ∈ [0,∞), whereas it is negative for all

y ∈ (−∞,0), which implies that both y∗ and f(σV ) tend to zero.

Claim 1: Let G denote

G :=EZv
[
ZvFγ

(
(µV +σVZv)y

αpσp

)]
+

y

αpσp
EZv

[
Zv(µV +σVZv)fγ

(
(µV +σVZv)y

αpσp

)]
.

Furthermore, let y < 0 and (85) hold. Then, we have G≤ 0.

Proof of Claim 1: By the definition of expectation, G is equal to:

G=

∫ √3

−
√

3

zvFγ

(
(µV +σV zv)y

αpσp

)
1

2
√

3
dzv +

y

αpσp

∫ √3

−
√

3

zv(µV +σV zv)fγ

(
(µV +σV zv)y

αpσp

)
1

2
√

3
dzv.

(86)
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Applying integration by parts to (86), we have:

G=

∫ √3

−
√

3

zvFγ

(
(µV +σV zv)y

αpσp

)
1

2
√

3
dzv +

[
zv(µV +σV zv)

2
√

3σV
Fγ

(
(µV +σV zv)y

αpσp

)]zv=
√

3

zv=−
√

3

−
∫ √3

−
√

3

zvFγ

(
(µV +σV zv)y

αpσp

)
1

2
√

3
dzv −

∫ √3

−
√

3

µV +σV zv
σV

Fγ

(
(µV +σV zv)y

αpσp

)
1

2
√

3
dzv

=
v̄

2σV
Fγ

(
v̄y

αpσp

)
+

v

2σV
Fγ

(
vy

αpσp

)
, (87)

where the second equality follows from (85). Applying integration by parts to (84) (or equivalently

(85)), we have:

v̄2

2(v̄− v)
Fγ

(
v̄y

αpσp

)
− v2

2(v̄− v)
Fγ

(
vy

αpσp

)
− y

αpσp

∫ v̄

v

v2
k

2
fγ

(
v̄y

αpσp

)
1

(v̄− v)
dvk = 0,

which implies from y < 0 that

v̄2Fγ

(
v̄y

αpσp

)
− v2Fγ

(
vy

αpσp

)
≤ 0. (88)

Using (88) in (87), we obtain below inequality for G:

G≤ v2

2σV v̄
Fγ

(
vy

αpσp

)
+

v

2σV
Fγ

(
vy

αpσp

)
=
v(v+ v̄)

2σV v̄
Fγ

(
vy

αpσp

)
=

v

σV v̄
µV Fγ

(
vy

αpσp

)
< 0,

which follows from v < 0.

�

Proof of Lemma A2: By the definition of expectation, G is equal to:

G=

∫ √3

−
√

3

∫
z∈A

zv

2
√

3
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

+

∫ √3

−
√

3

∫
z∈A

zv

2
√

3σp
(µV +σV zv)(∆µX + σ̄1z)(∆µX + σ̄z)

fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv. (89)

Applying integration by parts to (89), we have:

G=

∫ √3

−
√

3

∫
z∈A

zv

2
√

3
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

+

∫
z∈A

(∆µX + σ̄1z)

[
zv(µV +σV zv)

2
√

3σV
Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)]zv=
√

3

zv=−
√

3

fZ(z)dz

−
∫ √3

−
√

3

∫
z∈A

zv

2
√

3
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

−
∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3σV
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

=

∫
z∈A

∆µX + σ̄1z

2σV

[
v̄Fγ

(
v̄(∆µX + σ̄z)

σp

)
+ vFγ

(
v(∆µX + σ̄z)

σp

)]
fZ(z)dz
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−
∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3σV
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv. (90)

Now, consider the second part in the expression (90):∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3σV
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv. (91)

Changing the variable zv with vk−µV
σV

and using v = µV −
√

3σV and v̄ = µV +
√

3σV , the integral in

(91) is equivalent to:∫ v̄

v

∫
z∈A

vk

2
√

3σ2
V

(∆µX + σ̄1z)Fγ

(
vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk. (92)

Applying integration by parts to (92), we obtain the following equality:∫ v̄

v

∫
z∈A

vk

2
√

3σ2
V

(∆µX + σ̄1z)Fγ

(
vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

=

∫
z∈A

∆µX + σ̄1z

4
√

3σ2
V

[
v̄2Fγ

(
v̄(∆µX + σ̄z)

σp

)
− v2Fγ

(
v(∆µX + σ̄z)

σp

)]
fZ(z)dz

−
∫ v̄

v

∫
z∈A

v2
k

4
√

3σ2
V σp

(∆µX + σ̄1z)(∆µX + σ̄z)fγ

(
vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk. (93)

Using the condition (71) in (93), we have the following inequality:∫ v̄

v

∫
z∈A

vk

2
√

3σ2
V

(∆µX + σ̄1z)Fγ

(
vk(∆µX + σ̄z)

σp

)
fZ(z)dzdvk

≤
∫
z∈A

∆µX + σ̄1z

4
√

3σ2
V

[
v̄2Fγ

(
v̄(∆µX + σ̄z)

σp

)
− v2Fγ

(
v(∆µX + σ̄z)

σp

)]
fZ(z)dz. (94)

By the equivalence of (91) and (92), (94) implies:∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3σV
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

≤
∫
z∈A

∆µX + σ̄1z

4
√

3σ2
V

[
v̄2Fγ

(
v̄(∆µX + σ̄z)

σp

)
− v2Fγ

(
v(∆µX + σ̄z)

σp

)]
fZ(z)dz

⇒ 1

2σV

∫
z∈A

(∆µX + σ̄1z)v̄Fγ

(
v̄(∆µX + σ̄z)

σp

)
fZ(z)dz

≥ 1

2σV

∫
z∈A

(∆µX + σ̄1z)
v2

v̄
Fγ

(
v(∆µX + σ̄z)

σp

)
fZ(z)dz

+
2
√

3

v̄

∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv. (95)

Using (95) in (90), the following inequality could be written for G:

G≥ 1

2σV

∫
z∈A

(∆µX + σ̄1z)
v2

v̄
Fγ

(
v(∆µX + σ̄z)

σp

)
fZ(z)dz

+
2
√

3

v̄

∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv
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+
1

2σV

∫
z∈A

(∆µX + σ̄1z)vFγ

(
v(∆µX + σ̄z)

σp

)
fZ(z)dz

−
∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3σV
(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

=
1

2σV v̄

(
v

∫
z∈A

(∆µX + σ̄1z)(v̄+ v)Fγ

(v(∆µX + σ̄z)

σp

)
fZ(z)dz

+ (4
√

3σV − 2v̄)

∫ √3

−
√

3

∫
z∈A

µV +σV zv

2
√

3
(∆µX + σ̄1z)

Fγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

)
=

v

2σV v̄

(
2µV

∫
z∈A

(∆µX + σ̄1z)Fγ

(v(∆µX + σ̄z)

σp

)
fZ(z)dz

− 1√
3

∫ √3

−
√

3

∫
z∈A

(µV +σV zv)(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

)
=

v

2σV v̄

(
2µV

∫
z∈A

(∆µX + σ̄1z)Fγ

(v(∆µX + σ̄z)

σp

)
fZ(z)dz

− µV√
3

∫ √3

−
√

3

∫
z∈A

(∆µX + σ̄1z)Fγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

− σV√
3

∫ √3

−
√

3

∫
z∈A

zv(∆µX + σ̄1z)Fγ

((µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

)
≥ 0,

where the last inequality follows from v < 0, Claim 1 and Claim 2, stated and proved at the end of

this lemma.

Claim 1: Under conditions stated in Lemma A2, the following inequality holds:

EZv ,Z
[
Zv(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A}

]
≥ 0.

Proof of Claim 1: First, note that EZ
[
(∆µX + σ̄1Z)Fγ

(
(µV +σV Zv)(∆µX+σ̄Z)

σp

)
I{Z ∈A} |Zv

]
is a

random variable which is an increasing function of the random variable Zv by the following equation:

d

dZv
EZ
[
(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A} |Zv

]
=
σV
σp

EZ
[
(∆µX + σ̄1Z)(∆µX + σ̄Z)fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A} |Zv

]
≥ 0, (96)

where the last inequality follows from (71). Then, we have:

EZv ,Z
[
Zv(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A}

]
=EZv

[
EZ
[
Zv(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A} |Zv

]]
=EZv

[
ZvEZ

[
(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A} |Zv

]]
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=EZv [Zv]EZv ,Z
[
(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A}

]
+ Cov

(
Zv,EZ

[
(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A} |Zv

])
= Cov

(
Zv,EZ

[
(∆µX + σ̄1Z)Fγ

(
(µV +σVZv)(∆µX + σ̄Z)

σp

)
I{Z ∈A} |Zv

])
≥ 0,

where the second equality follows from the law of iterated expectations, the forth equality follows

from EZv [Zv] = 0 and the last inequality follows from (96).

Claim 2: Under conditions stated in Lemma A2, the following inequality holds:∫ √3

−
√

3

∫
z∈A

(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

≥ 2
√

3

∫
z∈A

(∆µX + σ̄1z)Fγ

(
v(∆µX + σ̄z)

σp

)
fZ(z)dz.

Proof of Claim 2: By (71),
∫
z∈A(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX+σ̄z)

σp

)
fZ(z)dz increases in zv. Thus,

we have: ∫
z∈A

(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dz

≥
∫
z∈A

(∆µX + σ̄1z)Fγ

(
v(∆µX + σ̄z)

σp

)
fZ(z)dz.

The rest follows from the algebra:∫ √3

−
√

3

∫
z∈A

(∆µX + σ̄1z)Fγ

(
(µV +σV zv)(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

≥
∫ √3

−
√

3

∫
z∈A

(∆µX + σ̄1z)Fγ

(
v(∆µX + σ̄z)

σp

)
fZ(z)dzdzv

= 2
√

3

∫
z∈A

(∆µX + σ̄1z)Fγ

(
v(∆µX + σ̄z)

σp

)
fZ(z)dz.

�

Proof of Lemma A3: The LHS of (72) could be written as:

EZ
[
(∆µX + σ̄1Z)(∆µX + σ̄Z)fγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
=EZ

[
(∆µX + σ̄Z)2fγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
− (σ̄− σ̄1)EZ

[
(∆µX + σ̄Z)Zfγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
(97)

= ∆µXEZ
[
(∆µX + σ̄Z)fγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
+ σ̄1EZ

[
(∆µX + σ̄Z)Zfγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
. (98)
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Now, we have two cases:

Case I: EZ
[
(∆µX + σ̄Z)Zfγ

(
Vk(∆µX+σ̄Z)

σp

)
| Vk = vk

]
≤ 0. In this case, it trivially follows from (97)

that EZ
[
(∆µX + σ̄1Z)(∆µX + σ̄Z)fγ

(
Vk(∆µX+σ̄Z)

σp

)
| Vk = vk

]
≥ 0 holds.

Case II: EZ
[
(∆µX + σ̄Z)Zfγ

(
Vk(∆µX+σ̄Z)

σp

)
| Vk = vk

]
> 0. In this case, the nonnegativity of

EZ
[
(∆µX + σ̄1Z)(∆µX + σ̄Z)fγ

(
Vk(∆µX+σ̄Z)

σp

)
| Vk = vk

]
directly follows from (98) and Claim 1 proven

at the end of this lemma.

Claim 1: We have EZ
[
(∆µX + σ̄Z)fγ

(
Vk(∆µX+σ̄Z)

σp

)
| Vk = vk

]
≤ 0 for any vk ∈ [v, v̄].

Proof of Claim 1: By the definition of expectation and the independence of Vk and Z, the expression

EZ
[
(∆µX + σ̄Z)fγ

(
Vk(∆µX+σ̄Z)

σp

)
| Vk = vk

]
could be written as:

EZ
[
(∆µX + σ̄Z)fγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
=

∫ ∞
−∞

(∆µX + σ̄z)fγ

(vk(∆µX + σ̄z)

σp

)
fZ(z)dz, (99)

where fZ(z) denotes the pdf of a standard normal random variable at point z. Replacing z with

xd−∆µX
σ̄

in the RHS of (99), we obtain:

EZ
[
(∆µX + σ̄Z)fγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
=

∫ ∞
−∞

xdfγ

(vkxd
σp

)
fX(xd;∆µX , σ̄)dxd, (100)

where fX(xd;∆µX , σ̄) represents normal pdf with mean ∆µX and standard deviation σ̄ at point xd.

By algebra, we can arrange the RHS of (100) as follows:

EZ
[
(∆µX + σ̄Z)fγ

(Vk(∆µX + σ̄Z)

σp

)
| Vk = vk

]
=

∫ 0

−∞
xdfγ

(vkxd
σp

)
fX(xd;∆µX , σ̄)dxd +

∫ ∞
0

xdfγ

(vkxd
σp

)
fX(xd;∆µX , σ̄)dxd

=−
∫ ∞

0

xdfγ

(vk(−xd)
σp

)
fX(−xd;∆µX , σ̄)dxd +

∫ ∞
0

xdfγ

(vkxd
σp

)
fX(xd;∆µX , σ̄)dxd

=

∫ ∞
0

xdfγ

(vkxd
σp

)
(fX(xd;∆µX , σ̄)− fX(−xd;∆µX , σ̄))dxd

=

∫ ∞
0

xdfγ

(vkxd
σp

)( 1√
2πσ̄

e
− (xd−∆µX )2

2σ̄2 − 1√
2πσ̄

e
− (−xd−∆µX )2

2σ̄2

)
dxd

=
1√
2πσ̄

∫ ∞
0

xdfγ

(vkxd
σp

)
e
−
x2
d+∆µ2

X
2σ̄2

(
e

∆µXxd
σ̄2 − e

−∆µXxd
σ̄2

)
dxd

≤ 0,

where the second equality follows from replacing xd with −xd in the first integral, the third equality

follows from the symmetry of the logistic distribution, the fourth equality follows from substituting

the formula of the normal pdf for fX(xd;∆µX , σ̄). Finally, the last inequality follows from ∆µX < 0

and xd ≥ 0.
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